
EMULSIFICATION IN TURBULENT FLOW 
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 2. NARROW SLIT HOMOGENIZER 
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• Isotropic turbulence (chaotic and non-directional) 



 3. OVERALL GOAL 
(1) Drop size distribution vs. stirring (ε), interfacial tension (σ), 

viscosity ratio (ηd/ηc) and drop life-time (τD) (surfactant 
adsorption Γ and distribution). 

(2) Phase inversion 
 
 4. IMMEDIATE GOAL 
 

• Understand the emulsification mechanism. 
• Describe quantitavely variations of drop size ∆R vs. variation of 

life time ∆τD due to surfactants. 
 
 ∆N

R RR+∆R

τD

τD+∆τD

N 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5. APPROACH 
Grasp the main factors and the overall scheme 

(a) Account for polydispersity by considering discrete set of 
sizes 

(b) Neglect dependence of rate constants on size 
(c) Assume that drops split always on two equal size drops 
(d) Assume that only equal size drops coalesce 



B. DROPS AND FILMS 
 
 1. MAIN EVENTS DURING FLOCCULATION OR COALESCENCE 

 

F = Driving Force (Buoyancy F , Brownian, Turbulent, 

Surface Interactions) 
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Main parameters 

• Drop Shape 
 
• Life Time, τ 

 

• Rate of Thinning, V  V d h
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• Critical Thickness of Rupture, hcr 
 
• Interfacial Mobility (Surfactant) 



2. TRANSITION SPHERE - FILM 
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Inversion (Film Formation) Thickness, hi: 
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Inversion at the same dissipation of energy • 

 
 

3. FILM RADIUS 
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4. LIFE TIME OF DROPS DRIVEN BY BUOYANCY 
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• Increasing drop radius increases the driving force but thereby 

increases also the film radius, thus decreasing the drainage rate 
and increasing life time. 
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5. ROLE OF THE ADSORPTION 
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• The effective concentration is much lower than the real bulk 

concentration. 
 



Surface coverage θ
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 θCR = 0.75 
 
 
 
 
 

• Variation of bulk concentration, C, and surface age, tW. 

Surface potential, ψs, mV
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• For DDBS there is a rather sharp transition between unstable and 

stable films, depending on the surface potential. 
• The   bubbles   are  stable  with  surface  potential  higher  than   

 =70 – 80 mV. th
Sψ



6. DRAINAGE RATE AND LIFE TIME OF THIN FILMS 
 
 
• Surfactant Balance 

Convection + Diffusion = 0 
• Stress Balance 

Shear = Elastic + Viscous 
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- with θ = 0.1, hS = 300 nm – strong surface mobility 
- with  hcr = 40 nm,  τ = 21 s 

 
• Role of the surface viscosity 
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• The true surface viscosity, ηS, can play a role only for small films 
and mobile surfaces when hS >> h, but then ηS ≈ 0. 

• For dense monolayers hS ~ 0.5 ÷ 1 nm - the surface mobility is not 
important. 

 
 



Interfacial Viscosity 
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Surface viscosity is coupled with surface mobility (through hS) and 
can play a role ONLY for mobile surfaces. 

• 

• 

• 

But then the TRUE surface viscosity is small. 

Even for small films (R = 10 µm) and mobile surfaces (hS = 10 nm) 
the effect of surface viscosity is comparable to surface elasticity only 
if ηS > 0.1 sp. 

 
 

Apparent Dilatational Viscosity 
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The apparent surface viscosity is due to dissipation through 
diffusion and is NOT related to intermolecular interaction 

• 

• 

• 

app
dη  depends on the film radius, i.e. it is NOT a property of the 

adsorbed layer and CANNOT be directly measured in a separate 
experiment. 

It is extremely high even at low concentration:  
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 7. BASIC EQUATIONS FOR FILM DRAINAGE 
 
 Lubrication 
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 Boundary Condition at z = ±h/2 
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8. RUPTURE OF THINNING FILMS 
 

 
 
Wave pressure: 
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9. EMULSION FILMS SURFACTANT IN THE DROP PHASE (SYSTEM II) 
 

Uniform Distribution of the Surfactant on the Film Surface 
 

(a) (b)
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• The surfactant has no effect on the rate of thinning. 
 

 
Chemical Demulsification 

 
 
 
 
 
 
 

DemulsifierEmulsifier Emulsifier

 
 

 
• The demulsifier fills in the spaces between the adsorbed 

emulsifier molecules damps the interfacial tension gradient ∆σ 
and increases many times the rate of thinning and coalescence. 



 Comparison of the Life Times of Systems I and II 
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The ONLY DIFFERENCE between the two systems is the 
SURFACTANT LOCATION.  

• 

• The surfactant concentration does not affect the life  time of the 
emulsion W/O  (system II). 



 10. GENERALIZED BANCROFT RULE 
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If Π in both phases is zero, τW/O << τO/W and the emulsion O/W 
(THE ONE WITH SURFACTANT IN THE CONTINUOUS 
PHASE) will survive – BNACROFT’S RULE. 

• 

• The surface interaction can play a decisive role through Π: If 
ΠW/O = Pc (but ΠO/W < Pc), τW/O/τO/W → ∞, emulsion W/O becomes 
thermodymamically stable and will survive in spite of the prediction 
of Bancroft’s rule. 

 
 
 



C. DROP SIZE DISTRIBUTION 
 

1. ISOTROPIC TURBULENCE (KOLMOGOROV) 
 
ε - rate of energy dissipation per unit mass 
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2. PRESENT THEORIES (STEADY DISTRIBUTION) 
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 3. APPROXIMATION OF ∆N/N BY δ - FUNCTION 
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• Kolmogorov’s drops become important at longer times 
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• This reduces most equations to the monodisperse case, including 

those for coalescence rate: 

( )2
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• Justifies assumptions (b) and (d). 
• Fails at Rc t RK (small drops). 
• Works better when coalescence is present. 



D. TURBULENT PRESSURE AND DROP SHAPE 
 

• Eddies are NOT molecules 
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(H., p. 310) For large Reynolds numbers and small distance, r, the 
pressure gradient does NOT depend on time 
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( ) ( ) pprp ∆+= 0  
 

• Laplace equation [P] 
 
Outside pressure p = p(r), inside pressure pin = const. 
 

( ) ( ) →×σ=− curvatureinprp  “Equilibrium” shape of stable drops. 
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• Under dynamic conditions – inside pressure is replaced by the 
viscous normal stress pnn. 

• Possible role of time and temporal pressure fluctuations 
(a) Through the time dependence of the velocity correlation 

function Qpp(r, t) (H, p. 308 Eqs. (3.298), (3.296)). 
(b) Through the time spectra and distribution functions (TL, p. 274 

and Chapter 6). 
 



E. DROP BREAKAGE 
 

1. CRITICAL (KOLMOGOROV) SIZE, RK 
 
If ( ) Rrp /σ>∆  
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• Find local capillary pressure Pc(x). 
• Determine lcr from drop volume and the maximum Pc: 
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• Determine the drop radius RK, at which the maximum in Pc 

disappears – this will give a generalized form of Kolmogorov size 
with numerical coefficient: 
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2. BREAKAGE TIME, τB 
 

• Time needed for deformation from sphere to breakage at lcr 
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• Scalling 
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• Inertia regime 
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• Viscous regime 
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• Limiting radius between the two regimes 
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From Re = 1 and τvisc (or τin) 
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• Rayleigh instability – only inertia regime (Shih-I Pai, Fluid 
dynamics of jets, § 1.9) 
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- Determine R0 and l from the  conservation of volume 
- Critical wave with length λcr ≈ (l-2R0)cr = 2πR0 
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- Formally coincides with the previous result but with different 

quantities. 
- The total breakage time is obtained by adding to τRay the time 

for expansion to length l. 
 

• Goal – Solve Stokes equation inside the drop with Laplace 
equation at least for small deformations (from sphere and/or 
cylinder) to obtain dynamic shape and breakage  time with 
numerical coefficients. 

 
 
 
 

 
 
 
 



F. GENERAL KINETIC SCHEME 
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• “Convective diffusion“ in time ”space” 
 

( ) iii dndqSLdtjjS =+′−′  
 

ni an Ni= total number and concentration of i – drops 
j = flux = NiV 
Nif = const – concentration of i-drops in the feed 
V = linear velocity  
dqi = production of i per unit volume in the element 
θ = L/V = residence time in the element 
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• Source terms 
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G. KINETIC SCHEME WITH ONLY BREAKAGE 
 

1. MAIN ASSUMPTIONS 
 

• Drops break in half, forming two smaller drops 
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• Drops with size smaller than Kolmogorov’s (Ri ≤ RK) do not 

break. 
• The rate constant are assumed eventually independent of Ri 

(ki = k). 
• Since ( )2/3or ii

B
i RBRa=τ

B
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, all Ni(t) drops break simultaneously 
after time τ . 
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•  depends weakly on vB

iτ i and is assumed constant, τB. 
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2. THREE-SIZE SYSTEM 
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v1 = initial 
v3 = vk 

 
 
 
 
 
 
 
 
 
 

• Assume that . Dubious approximation even for a 
monodisperse emulsion, since N and thereby R and τ

BBB kkk == 21
B changes 

with t, so that τB and kB must depend at least on Rc(t). 
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• The process stops at R = RK (N=Nk). 
 
 



• Nk can be determined from the volume fraction Φ: 
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• At short times (kt = X Ü 1) Nk Ü N and 
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• Exact solution: 
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• If Nk can be neglected 
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• If the exact function (i.e. experimental data) is approximated by 

lnY, the apparent rate “constant” k  is much smaller than 
k
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Yexact = 4-(3+2*X)*EXP(-X) 
Y1 = EXP(-X) 
Y2 = 2*XEXP(-X) 
Y3 = 4*(1-(1+X)*EXP(-X)) 
EXP(X) 
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 3. CONTINUOUS PROCESS WITHOUT COALESCENCE 
 
For the i-size in moment t: 
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• Sum up over all i. 
• Summation stops at Kolmogorov size with Ni = Nk. 
• Assume ki

B = kB = 1/τB. 
• For the n-th pass: 
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(a) Slow Breakage (τB > θ) 
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• Steady state kslt → ∞ (follows also from dNn/dt=0): 
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 (b) Fast Breakage (τB < θ) 
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• In the fast regime there can be also a plateau if the Kolmogorov 
size is reached. 

 
 
 
 
 



H. COALESCENCE RATE 
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 = number of coalescence events between drop of volume vi in unit time. 

 
      1. COALESCENCE OF SPHERICAL DROPS (BIMOLECULAR REACTION) 
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E = efficiency factor, analog of activation energy 
F = driving force for coalescence 
Fext = external (turbulent) force 
Fint = interaction (repulsive) force between the drops 
 

F = Fext - Fint 
 
 

• Since both Fext and Fint depend on R, some collisions (for which F 
< 0) will NOT be efficient. 
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 2. CONSECUTIVE IRREVERSIBLE REACTIONS FOR DROPS FORMING 

A FILM 
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SINGULAR PERTURBATION 
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• Macroscale 

 
 
 
 
 
 
 
 
 

• Microscale 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

• Back to macroscale – coupling of macro and micro events: 
- The rocket slows down the train 
- The speed of the train affects the taking aim 



• The barrier depends also on the size, since the driving pressure is 
∆P = 2σ/R - Π. 

• Successful coalescence corresponds to 
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t0 and θ = macroscopic time and time scale 
τ = microscopic time scale 
scaled times: t = t0/θ and t = t0/τ 
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If τ/θ → 0, then →= 0
dt
dqi  blow up of the micro-events. 

 
• Micro-kinetic scheme in microtime t (scaling time is the collision 

time – scale, τc). 
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Z = number of complexes (2 drops with film which can rupture). They 
must rupture at time t0 + τD, where τD is the drainage time: 
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Estimate of τ  c 
 
Scale N1 by N10, the number of drops 1 at t = 0 (N1 = N10N1′) 
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with N1(0) = N10 from (a) and (b): 
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Introduce x = K/N1 << 1 
 
 
 



 The solution of the linear equation is 
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Keep only 1/x. With Z = 0 at x = x0 = K/N10 (i.e. at t = 0) one obtains 
 

For x → 0 it becomes 
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Going back to macro-time t0 by substituting t = t0/τc, one obtains for any i 
(Note that Ni0 is Ni(t0)) 
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• For simplicity we have implicitly assumed (by taking x << 1) that 
the first process, collision, is the slow one – this is the inner 
solution. That is why the results depend only on τc (i.e. ). c

ik
• The realistic case, τD >> τc, corresponds to the outer solution and 

to scaling t = t0/τD. The determination of the integration constants 
for this solution requires matching of the inner and outer 
solution (A.H. Nayfeh, Perturbation methods, John Wiley, 1973, 
p.114). 

• The coalescence contribution to the balance of Ni is: 
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Here t is macro-time and the two derivatives are given by (c).  



3. TURBULENT FORCE F  ext AND FILM RADIUS R  F 
 
 (a) Collision probability 
 

• The coalescence process in the emulsion is an ensemble of 
parallel events, occurring between different pairs of drops. 
Hence, the overall speed will be determined by the fastest ones. 

• Since τD ~ 1/R , the most favorable collisions between the 
deformed drops are head on (corresponding to smaller RF): 
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• If Zsph are the collisions between spherical drops, the number of 
favorable collisions, Z, will be roughly 

 
2








=
R

RZZ turb
sph  

 
 (b) Force Balance on Film 
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