Non-Stationary Heat and Liquid Transport in Capillary-Porous Materials During Intensive Microwave Heating

Nikolay N. Grinchik\(^{(1)}\), Alexander L. Adamovich\(^{(2)}\), Semen P. Kundas\(^{(3)}\), Yury G. Grozberg\(^{(2)}\)

\(^{(1)}\) A.V. Luikov Heat and Mass Transfer Institute, Minsk, Belarus
\(^{(2)}\) Polotsk State University, Novopolotsk, Belarus.
\(^{(3)}\) Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus

The differential equations system for non-stationary moisture transport in capillary-porous materials during intensive microwave heating based on multiphase filtration law, Kelvin, Clapeyron-Clausius formulas, desorption isotherms of wet materials, Debye relaxation model is offered. The results of numerical computer simulation are submitted to show the time evolution of temperature, moisture content, vapor pressure and strength of microwave in sample.

View the extended summary