Quasi-Geostrophic Dynamos

Nathanel Schaeffer, Philippe Cardin
LGIT, Université Joseph Fourier, Grenoble, France

Taking advantage of the properties of liquid metals and of rapidly rotating flows, we are able to compute dynamos at high Reynolds number ($Re > 10^5$) and low magnetic Prandtl number ($Pm < 10^{-2}$). We developed a numerical model that uses a quasi-geostrophic approximation to compute the flow (without subgrid scale model), leading to two-dimensional equations. The induction equation for the magnetic field is fully resolved in 3D, in a sphere. This approach proves quite efficient for low magnetic Prandtl number and suitable flows, for which there is a scale separation between magnetic field and velocity field, allowing to compute the magnetic field on a coarser grid and with larger time steps than for the velocity field. We show results of these calculations applied on the turbulent flow produced by the destabilization of a Stewartson shear layer.

View the extended summary