Nonlinear Long Waves on the Interface of a Two-Layered Horizontal Flow of Viscous Liquids

Dmitry G. Arkhipov(1), Georgy A. Khabakhpashev(2)

(1) Novosibirsk State University, Novosibirsk, Russia
(2) Institute of Thermophysics, Academician Lavrentyev Ave., Novosibirsk, Russia

This paper deals with the theoretical study of plane waves with small but finite amplitude in the two-layer system bounded by the horizontal lid and bottom. It is supposed that characteristic lengths of perturbations are sufficiently larger, its amplitudes are much smaller, and non-stationary boundary layers are much less than depths of liquids. It is shown that dissipation affects distinctly on a vertical motion at relatively high velocities of the steady unperturbed flow. The evolution equation for the interface disturbances, which takes into account long-wave contributions of the layers inertia, weakly non-linearity of waves and non-stationary shear stresses at all boundaries of the system is obtained. On neglect of dissipation for the perturbation current steady-state solutions of conoidal and solitary waves type are determined. It is found that amount and direction of a flow may change not only lengths of disturbances but its polarity too.

View the extended summary