Effect of an Oscillating Cylinder on a Neighbouring Cylinder Wake

Y. Yang(1), Y. Zhou(2), Z. Guo(3)

(1) Harbin Institute of Technology, Shenzhen, China
(2) Hong Kong Polytechnic University, Kowloon, Hong Kong
(3) Huazhong University of Science and Technology, Wuhan, China

This work aims to investigate numerically how an oscillating fluid-structure system influences vortex shedding from a neighbouring stationary cylinder. The numerical technique employed is a newly developed lattice Boltzmann method. The calculation was carried out at \(Re = 150 \) for a two-dimensional flow around two side-by-side circular cylinders, one oscillating laterally at an amplitude \(A/d = 0.1 \) and frequency \(f_e/f_o = 0.4 \) \(\sim 1.6 \). The cylinder centre-to-centre spacing \(T/d \) varied from 1.8 to 3.5. The numerical data reconfirm previous experimental finding that the oscillation of one cylinder can lock in vortex shedding from a neighbouring stationary cylinder as well as from the oscillating one. It is further found that the \(f_e/f_o \) range over which the locked-in response is observed grows as \(A/d \) increases. As \(T/d \) increases, this range shrinks at a fixed \(A/d \) because of the fading oscillating influence. Furthermore, the dependence of typical flow structures, drag and lift on \(A/d, f_e/f_o \) and \(T/d \) are also examined.

View the extended summary