Grad-Type Expansion About Nonequilibrium States for the Relaxion-Time Approximation of the Boltzmann–Peierls Equation

Zbigniew Banach, Wiesław Larecki

Polish Academy of Sciences, IPPT, Warsaw, Poland

A new type of heat transport equations for transient processes under high thermal loads is derived from the microscopic, kinetic-theory description of a phonon gas. The Grad-type expansion of the phonon distribution function about the nonequilibrium anisotropic Planck distribution (called drifting distribution) is applied to the two-relaxation-time approximation of the Boltzmann–Peierls kinetic equation. Substitution of the truncated expansion into the corresponding system of moment equations results in a closed system of the evolution equations for the moments which involves two relaxation times, is nonlinear in the energy and in the heat flux, and depends linearly on the higher-order moments of the distribution function. Thus, the obtained theory conforms to the two time scales of the phonon gas relaxation processes and admits arbitrarily large heat fluxes.

View the extended summary