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This paper is a third of a series of the three where eccentric cases of flow in silo models recorded by the DPIV tech-
nique are presented and discussed in detail. The methodology of empirical descriptions of velocities, flow rate
and stagnant zone boundaries on the base of registered velocity fields in eccentric filling and discharge in 2D
silo model was discussed. In previous two papers [1,2] we analyzed also eccentric flows but with different loca-
tions of the outlet. It was stated that in practice even tiny eccentricity of filling or discharge processes may lead to
quite an unexpected behavior of the silo structure. During asymmetrical processes, flow patterns and wall stress-
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Eccentric granular flow es may be quite different. It is therefore crucial to identify how flow patterns developed in the material during
Silo model eccentric filling or discharge and to determine both the flow rate and wall stresses occurring under such state

of loads. Thus, we discuss here the third case of discharge — located in the center of the silo bottom. A comparison
of these three cases of discharge mode will be presented in the next paper. Empirical descriptions of eccentric
flow velocities in silo model by the linear and nonlinear regressions are presented here with specific functions
like the Gaussian function and “the double logarithmic function”. In both methods the velocity was also
descripted by linearization and in the Gaussian method also by the nonlinear method of Gauss-Newton and in
the case of the method of double logarithm — the nonlinear method of Levenberg-Marquardt was applied.
Velocities were predicted by using interpolation due to the nonlinear model of the Gaussian type and to the

Empirical description

Linear and nonlinear regression
Gaussian description

Double logarithm

nonlinear function of “the double logarithm”.
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1. Literature review

Eccentricity is always a dangerous factor influencing to the silo
structure. Technological processes can be disrupted while any eccentric-
ity occurred. International Standards usually relate to axial symmetric
states of stresses and even avoid defining discharge pressures and
flow patterns because of continuing uncertainties defining the flow
channel geometry and wall pressures under eccentric discharge or the
values of increased coefficients of horizontal pressure during eccentric
discharge [3,4]. In [3-6] we read comments on the eccentricity of the
outlet, on the flow channel geometry and the wall pressure under ec-
centric discharge. Eccentric discharge is described as a flow pattern in
the stored solid arising from moving solid being asymmetrically distrib-
uted relative to the vertical centreline of the silo. This normally arises as
a result of an eccentrically located outlet but can be caused by other
asymmetrical phenomena which are not clearly defined. As it was
commented in [1] calculations for flow channel geometry are required
for only one size of flow channel contact with the wall, which should
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be determined for ©c = 35° and wall pressures under eccentric dis-
charge are also defined and discussed in [1]. Researchers tried to make
approaches to develop designing of bins under eccentric discharge
[7-9] and Carson [10] in detail presented the issue of eccentricity as
one of the major causes of hopper failures. Eccentricity of the flow to
the silo axis causes the pressure patterns to become much more
complex than in centric cases. In the field of silo investigations three
main issues are usually analyzed: pressures under eccentric discharge,
flow patterns and stagnant zone boundaries.

Works on eccentric discharge have been published for many years
and a few researchers have dealt with this complicated problem. In [1]
one can find a detail discussion of investigations in silos during eccentric
discharge, silo loads and wall loads, measurements of wall loads when
unloaded eccentrically, the effect of eccentric unloading in a model bin
for different unloading rates, the effect of eccentricity and ways of dis-
charge in silo, flow patterns in a silo with symmetrical and eccentric
outlet. There are works [7-13] where authors investigated the behavior
of silos under eccentric discharge, identified flow patterns and stresses
on the wall during centric and eccentric discharges. They also made
measurements of the wall pressures under eccentric discharge, investi-
gated discharge and the eccentricity of the hopper influence on silo wall
pressures, and measured experimentally the heights of the stagnant
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zones for two kinds of granular materials after hopper eccentric and
centric discharges. Theoretical analyses were made using the kinematic
model, proposed by Nedderman and Tiiziin [10,13,14], for filling and
discharge — centrally and eccentrically. Further numerical investiga-
tions were conducted in [15,16] by applying FEM modeling in the anal-
ysis of influence of hopper eccentricity on wall pressures or a buckling
strength of steel silo subject to code specified pressures for eccentric
discharge. Another field of investigations was related to localized defor-
mation pattern in granular materials, investigating shear localizations in
granular materials numerically and compared the obtained results to
experimental data [17]. In [18] one can find a long list of references
concerning investigation of eccentric discharge.

Investigation of flow patterns and wall stresses in silos and other
hoppers is usually carried out on laboratory models. Many different
measurement techniques have been used in such studies: visual mea-
surements through transparent walls, colored layers and photography,
colored layers and dissection after freezing the flow with paraffin wax,
photographic or video techniques, and tracer techniques using X-rays
and radio pills and insertion of markers to measure residence times
[18]. In laboratory tests very significant scale effects in silo flow and
pressures were reported in [19-23]. However, almost all of these tech-
niques are not viable at full scale. Many tests on full scale silos were
made to measure wall pressures [24]. There are a few examples given
in literature where the measurements of flow patterns were performed
on line [18,25,26]. Such investigations are very expensive, due not only
to the enormous size of the silo but also to the difficulties in accessing
the structure. Because of the difficulties of access at natural scale such
as opaque walls, opaque solids, surface covered with dust and intrusive
investigation techniques, such as the penetration of the wall, rarely
acceptable by silo owners, model silo studies seem to be very useful in
the recognizing flow patterns. Though, the challenge of observing flow
processes at full scale remains considerable. The flow inside the silo
has been poorly identified till today and the investigation of flow
modes inside the silo is almost impossible.

Silos are structures having round horizontal cross sections. Usually
all laboratory models are flat and only flat flow is investigated. There
are also round laboratory models but in this case, it is much more
difficult to measure stagnant zone boundaries. In such models usually
the problem of flow modes and determining wall pressures are made.

2. Experimental procedure

To register velocities of flowing grains we applied the DPIV (Digital
Particle Image Velocimetry) technique which made it possible to
identify the eccentric flow in the plane flat-bottomed model silo made
of Plexiglas. Two other eccentric cases of the flow were discussed in
[1,2]. The images of the flowing material were recorded by a high-
resolution camera and evaluated using the DPIV technique. The adopted
DPIV technique was based on the optical flow algorithm, which has
been found to be most reliable for granular flow images. In [43] the
authors presented a detailed description of the OF-DPIV, including its
development and application. The experimental setup used for the
flow analysis consisted of a transparent acrylic plastic box, a set of
illumination lamps, and a high-speed CCD camera (PCO1200HS) with
an objective 50 mm lens produced by PCO AG, Kelheim, Germany
[http://www.pco.de/high-speed-cameras/pco1200-hs/]. The transpar-
ent flat-bottom silo model had a height 800 mm, a depth of 100 mm
and a width of 260 mm. The model was placed on a stand and granular
material was supplied through a box suspended above the model. The
bottom of the supplying box contained a sieve and the box was filled
with flax seeds to 2/3 of its height. The model was filled close to the
left wall. The discharge outlet was located centrally at the bottom of
the silo. The width of the outlet was 10 mm. In order to evaluate
transient velocity fields, long sequences of 100-400 images were
taken at variable time intervals, covering the whole of the discharge
time. The DPIV technique used here produced velocity fields for the

full interrogation area. The velocity profiles obtained inside the quasi
two-dimensional silo were smooth and free of shock-like discontinu-
ities. The flax seeds showed some effects of static electricity when
flowing and sliding over the transparent acrylic plastic. The granular
material was introduced in a form of a uniform stream into the silo
model to obtain uniform and repeatable packing of the material with
no particle segregation. The evolution of the flow region and the traces
of flowing particles were evaluated from recorded images. Pairs of dig-
ital short exposure images were taken to describe how the velocity field
varies in the flowing material. This data was used in empirical descrip-
tion of the flow. The properties of the amaranth seed used in the exper-
iments were: wall friction against transparent Plexiglas ¢,, = 26°, angle
of internal friction ¢, = 25° granular material density deposited
through a pipe with zero free-fall 746 kg/m> at 1 kPa and 747 kg/m>
at 8 kPa, Young's modulus 6.11 MPa. The values of the angle of in-
ternal friction for the flax-seed are taken from the Polish Standard
PN-89/B-03262. Sequences of 12-bit images with the resolution of
1280 x 1024 pixels were acquired by Pentium 4 based personal com-
puter using IEEE1394 interface. The system allowed acquiring up to
1000 images at time interval of 1.5 ms (667 fps). The velocity field
was evaluated for triplets of images using the DPIV based on the Optical
Flow technique. Dense velocity fields with vectors for each pixel of the
image were obtained and used for further evaluation of the velocity
profiles, velocity contours and streamlines. The term “streamline” is de-
fined as a direction of the flow of different particles at the same time. In-
trinsic resolution of the PIV technique is limited by the size of the area of
interest that is used in the application of the cross correlation algorithm
between subsequent images and this is generally one order of magni-
tude larger than a single pixel. The aim of the present investigation is
to explore the possibility of using the Optical Flow technique based on
PIV in measuring granular material flow velocity. In granular material
flow one usually visualizes a track of individual particles, not necessarily
coinciding with the streamline. Such tracks were obtained by Choi et al.
[11], who used a high-speed imaging technique to trace the position of
single particles in granular materials. Velocity profiles obtained that
way for the flow of granular material inside a quasi-two-bottomed
silo were smooth and free of shock-like discontinuities. In contrast,
the DPIV technique used here produces velocity field for the full interro-
gation area, and this can be used to predict the natural track of
individual particles.

In general, this technique was applied in fluid mechanics and its first
applications to granular material flow were presented by [27,28]. One of
the first successful attempts to apply the PIV technique to granular
matter was described in [28-35] and reported the use of the PIV tech-
nique in their experiments to obtain information on local velocities of
particles at several elevations in densely packed materials. Ostendorf
and Schwedes in [30] combined PIV measurements with wall normal
stress measurements at different points of time in a large scale silo.

Observations of the discharge process allow us to understand the
behavior of the flowing material. As mentioned above, different measure-
ment techniques have been used in investigations of flow in silo models. A
number of experimental works have been focused to measure flow pat-
terns. Optical techniques are commonly used in the analysis of velocity
profiles near the transparent silo walls. The X-ray technique was fre-
quently applied to obtain information from deeper flow layers [36,37].
Also, other non-invasive measurement techniques were applied to regis-
ter granular flow, density and velocity fields in flowing zones, among
others spy-holes, radio transmitters, positron emission [38], magnetic res-
onance imaging, radioactive tracers, and ultrasonic speckle velocimetry.
More details on different techniques used in investigations of granular
flow in small models can be found in references given in [28,38-42].

The case discussed here is recognized as eccentric filling but the po-
sition of the outlet that was symmetrically located was shown in Fig. 1.
This location of the outlet produces a very interesting flow mode of the
material, becoming symmetrical very quickly after opening the outlet.
Despite eccentric feeding, just after 25th of the flow, the material
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Fig. 1. Velocity distributions in the model while eccentric filling on the left and discharge in the center [34].

tends to form a symmetric flow. Soon after the initiation it is possible to
observe nearly uniform flow channel for the entire height of the silo. In
the plug flow region the velocity vectors in the initial phase of the flow
are still not vertical but soon they pass directly and vertically to the out-
let. In the upper part of the flow the velocity vectors indicate converging
lateral flow towards the flowing zone. It seems that the central outlet
induced the formation of the central plug flow.

The technique DPIV provides wide possibilities to obtain various
data on the flow. We present velocity distributions on the various levels
in the model (cf. Fig. 2). The profiles of vertical velocity components
across the cavity were obtained at different heights indicated in the
legend in Fig. 2 and at time steps of 15,25 s, 50, 75 s, and 100 s after
the beginning of the experiment. In Fig. 2a, at h = 5 cm above the outlet
(the red line) one can observe the shape of the velocity profile. This
profile is a special one because in each case of eccentric flow it behaves
individually especially at the beginning of the flow [1,2]. It means that
the central position of the outlet makes the flow symmetric soon after
the flow starts. The filling feed does not play a significant role. The
other profiles form a bunch of functions on the due levels. In the case
of central discharge, this velocity profile reaches its maximum value in
the flowing zone and becomes symmetric. Fig. 3 presents an evolution
in time of the stagnant zone boundaries for three eccentric cases.

Three analyzed eccentric flows are very complex, especially due to
appearance of localisation of deformation between flowing and station-
ary solid. Very narrow zones occur between flowing and stagnant
material. These narrow zones are of intense shearing. Our investigation
was performed in the model with smooth walls thus the shear zones do
not form close to the wall. They can also occur between the wall and the
stagnant material but in the case when the wall is rough. The registered
deformation fields in the flowing flax seed in the plane model during ec-
centric flow and obtained directions of deformation provided valuable
information on the mechanism of the granular behavior inside the
silo. The knowledge of the range of deformation fields is the reason to
perform theoretical description of shear localisation in flow processes.
And this can be presented in our future works.

3. Experimental results and statistical descriptions

The main objective of this paper is to present statistical analysis of
experimental results obtained in the eccentric flow case and searching
for empirical description relating to experimental readings.
3.1. Results of velocity V), for time instants t = 1, 25, 50, 75 s

Results of experimental measurements of velocity V, for level h = 5,

10, 20, 30, 40 cm and for time instants t = 1, 25, 50, 75 s are given in
Tables A-E in the Appendix.

3.2. Rejection of “thick errors”

On the base of data given in Tables A-E (given in the Appendix) we
calculate the average vertical velocity V, for different localizations of
points x and the standard deviation S using the formula:

V V}/i

y = Z?:l n
S (VW) v

n

S—

where: Vy denotes the average values of velocities, V,, is the flow
velocity mmy/s, n is the number of time instants taken for the analysis
and S is the standard deviation.

One of the methods, how to estimate the presence of so called
“thick” errors in our experimental data, is to calculate statistics K
according to formula (2):

‘. ‘Vyl—\/sy) max . 2

Values of statistics K are calculated on the base of data given in
Tables A-E in the Appendix. The critical value of this statistics K;; for
the significance level & = 0.05 will be taken from [44]. If the value of
statistics K is lower than the critical value K.; then we do not have
any reason to think that so called “thick” errors exist in our experimen-
tal data. And vice versa, if the value of the statistics exceeds the critical
value K then we should reject such experimental readings.

3.3. Investigation of influence of time on velocity of flowing grains in the
model

On the base of data given in Tables A-E presented in the Appendix,
the confidence intervals for average values of velocities were calculated
according to formula:

S

V
vn—1

S
y_tn—l.l—% m

<”<Vy+tn—l‘l—% (3)

where: Vy and S were calculated according to formula (1), t, — 11 — o215
the quantile of t-Student distribution for significance level @ = 0.05
[44], and p denotes the average value of population for n — 1 numbers
of freedom.

The calculations presented above are given in Tables F-] in the
Appendix.
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Comparing data given in Tables A-E with data given in Tables F-J
presented in the Appendix we can state, that there is no reason to reject
“zero hypothesis”, that means that time is not an important factor
influencing on the velocity for any given point x.

3.4. Investigation of velocity values for points located symmetrical to the
silo symmetry axis

The axis of symmetry of the silo model is located in the distance at
x = 13 cm from the lateral edge of the model. Symmetrical locations
of points are for abscissa 13 — n;and 13 + n;, where n; is the readings
of velocities for points located on both sides of the axis of symmetry
of the silo model.

We assume “the zero hypothesis” (H) and “the opposite hypothesis”
(Hy):

H::u137n, = Hi34n; Hy: Hiz—n, 7 Mz,

and in this way we verify the hypothesis of the average value of two
populations. To do this we calculate statistics t in the case of the same

5
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or in the case of different numbers of repetitions of experiments by
formula (5):
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The critical value in this case at the level of significance o = 0.05
according to the t-Student is teiicar = £0.05:13—n; 13+n;-

In this case when the value of statistics calculated from formula (4) to
(5) is higher than the critical value then the hypothesis H should be
rejected, in the opposite case there is no reason to reject the hypothesis.

Before calculating formulas (4) and (5), we have found the homoge-
neity of the variance for various heights h in the model using the

5

time = 25 sec. h=5cm
—— h=10cm
~———— h=20cm
0 ———— h=30cm
h=40cm
~————— h=50cm
-
w S
£
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>
> 0
A5
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D s
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Vy [mm-s?]

25 50
time [s]

Fig. 2. A-E) Velocity profiles for the flow of flax-seed obtained for A) eccentric filling on the left and discharge in the central part of the bottom; F) variation of velocity-distribution in time,

G-]) velocity profiles on selected levels inside the model [34].
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Fig. 2 (continued).

Hartley's statistics F,,qx and data given in Tables F, G, H, I and ] in the
Appendix:

SZ
Fmax = Sr;J (6)
min

In this case for statistics Fy,qx from formula (6) the critical value with
the significance level a« = 0.05 according to the distribution F;,, equals
Fnax critical = Fmax:0.05:n — 1:k» Where n denotes the number of repetitions
of experiments for the given height h, k denotes the number of compar-
isons of experimental readings for the given heights h.

In the case when the value of statistics calculated from formula (6)
is higher than the critical value then the hypothesis of equality of
variances can be rejected, in the other cases there is reason to reject
the hypothesis of equality of variances.

a) b) c)
3 3 3
2.5 25 25}
2 2f 2l
—_— t=1s
15 15 15F — i=5s
i ——— t=10s
1 1k 1+ — t=25s
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=100 s
ol ; 0 X t=125s
0 05 1 0 05 1
b/B b/B

Fig. 3. Experimental measurements of the stagnant zone boundaries in the flowing flax
seed in the case of eccentric filling and discharge: a) central, b) on the right, and c) on
the left [34].

Calculations made according to formulas (4) and (5) are summa-
rized in Table K given in the Appendix.

4. Empirical description of velocity V, of flowing grains in the model

We present two types of empirical descriptions of velocities of
flowing grains in the silo model. The values of calculated coefficients
of correlation confirm our choice of the function. If they are close to
“1” or “—1” then empirical description is more precise.

4.1. Description by Gaussian bell curve

4.1.1. Determining the constants in Gaussian bell curve by linearization
The proposed empirical function is of the following form:

B; 2
V, =Ae™ (7a)
. Vy. 13—nj+ Vy.l}—n-
where: x; = [x — 13| cm, and V,, = ===,
When calculating the logarithm (7a) we obtain:
InV, =InA+Bx. (7b)
Denoting that
InV,=Y, InA=gq, xf:X1 (7¢)
we obtain
Y =a+BX,. (7d)

From Eq. (7d) we determine parameters a and B using the method of
the least squares and then the value A = e

It is crucial to be convinced if the proposed formula (7a) is correct.
To do this we can put experimental points on the functional scales.
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Tracking the functional scale on horizontal ax x7 and on the vertical ax
InV,, we can see that (Fig. 4a), the experimental points are put along
the straight line. It can be proved for heights h = 5, 10, 20, 30, 40
[cm]. The coefficient of correlation confirms this for the straight line pre-
sented in formula (7d) and it is given in Table 1 as |r]|.

The constants A and B were calculated by the least square method
after linearization of formula (7a) and using data given in Tables A-E
in the Appendix. Their values are listed in Table 1.

The constants A and B from Table 1 after the first regression
depended on height h = z according to formula (8) and are given in
Table 1 in brackets.

A =23.90—0.9124 7+ 0.01369 (8)
B = —0.2239 + 0.0146 z—0.0002436 7*

In this way using formulas (7a) and (8) we can calculate the flow
velocity in any given point on demand position of this point and on
the distance of the point from the axis of symmetry.

InTable 1 the absolute values of the coefficient of correlation r for the
straight line from formula (7d) and with velocity V, from formula (7a)
are listed. The coefficients of correlation R for all velocities Vy, are
presented also in Table 1.

4.1.2. The Gaussian description — nonlinear regression

The constant values A and B from formula (7a) we can calculate by
the Gauss-Newton method and with the nonlinear regression using
the initial values of these constants from The constants A and B (given
in Table 2) after the first regression depended on height z = h according
to formula (9) — a parabola of the second order.

A=19.76—0.6187 z + 0.00843 7° )
B = —0.1635 + 0.01005 z—0.0001624 7°

The values A and B after the second regression for level z = h are
given in Table 2 in brackets.

10,90
10,35
5,25
16
0
By
10— -
¢ r=-0,953
5
¢
0 T T T
22 23 24

Fig. 4. A. Visualization of formula (7a) in the functional scales. B. Graphical form of
derivatives from Eq. (10e) for h = 5 cm.

Table 1
The constant values A and B from formula (7a) after nonlinear regression.

h [em] 5 10 20 30 40

Constant values

A 20.10 15.70 10.59 975 8.95
(19.68) (16.14)  (11.12) (8.85) (9.30)
B —01764 —0075 —00242 —00260 —00189
(—0.1569) (—0.102) (—0.0288) (—0.0431) (—0.02857)
r —0992 —0989  —0.969 —0962 —0.935
R 0.969 0.947 0.929 0.899 0.890

4.2. Description of velocity V, of flowing grains by “the function of double
logarithm”

4.2.1. Determining constants for the function of “double logarithm” by
linearization
The proposed empirical function for velocity is of the following form:

A+BIn x+C In 2x

V,=¢ (10a)
Calculating the logarithm of Eq. (10a) we obtain:
InV,=A+Blnx+Cln’x (10b)
Denoting that
InV,=Y and Inx=X (10c)
we obtain
Y =A+BX + CX%. (10d)

It is important to be convinced that if the description given in
Eq. (10a) is made correctly we should verify if the description (10d) is
correct. Eq. (10d) presents a parabola of the second order and the deriv-
ative gx—y presents the straight line. To check if the points which were cal-
culated are put along the straight line we draw parabola through three
successive points i, j, k, by using the Lagrange'a interpolating polynomial
and then we calculate the following derivative:

L XX
(xi=) (% -%,)

Yy (10e)

dy _ X; — Xk
ax () - ( X, )X Xy

j i
T XX, ) (Xex;)

After calculating the derivative of Eq. (10e) we saw that the points
are put close to the straight line (Fig. 4b).

We can present another graphical forms of Eq. (10e) for other levels
h =10, 20, 30, 40 cm. We can calculate the derivatives for these heights
and create the straight lines.

The constant values A, B and C by linearization of formula (10a) were
calculated by the least square method and are given in Table 3.

Table 2
The constant values A and B from formula (7a) after the nonlinear regression.

h [em] 5 10 20 30 40

Constant values

A 17.14 14.06 10.74 9.04 839
(1688)  (1442) (10.76) (8.79) (8.50)

B —0132  —00573  —00280  —00200 —0.015
(—0.117) (—0.0791) (—00272) (—0.0078) (—0.021)

R 0.992 0.965 0934 0919 0.941
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Table 3
The constant values from formula (10a) calculated by using the linear regression.

h [em] 5 10 20 30 40

Constant values

A —13637  —8153  —4184  —1547  —11.05
(—14184) (—7036) (—3461) (—2270) (—16.74)

B 109.71 67.34 35.38 1441 10.97
(114.29) (57.90) (29.71) (20.31) (15.61)

c —2162 —1344  —705 —294 —228
(—2255)  (—1149) (—596) (—412)  (—3.220)

R 0983 0.873 0.805 0.920 0.889

The constant values A, B and C given in Table 3 depended on
height z = h according to formula (11):

A=1130—-714.88 ; r=—0.987

B:1.513+563.86;, r=0.985 (11)
C=—-0.434—110.60 % r=—0.985.

The values calculated from formula (11) are given in Table 3 in
brackets.

4.2.2. Description of velocity V), using the nonlinear regression

The constant values A, B and C from formula (10a) we can calculate
by the Levenberg-Marquardt method and with the nonlinear regression
using the initial values of these constants given in Table 3. Their values
after the nonlinear regression are presented in Table 4.

The constant values A, B and C given in Table 4 depended on
height z = h according to formula (12).

r=—0.998

)

A = 10.696—756.66 %
B = —5.906 + 593.51 % r=0.998 (12)
C=1.089—115.77 % r=—0.988.

The values of these parameters calculated for z = h after the second
regression are listed in Table 4 in brackets.

5. Analysis of empirical results
5.1. Comparison of empirical description with experimental results

In Figs. 5, 7,9, 11, and 13 the comparison of experimental results
with empirical description by the function of Gaussian type according
to formula (7a) and using data given in Tables 1 and 2 is presented.

In Figs. 6, 8, 10, 12, and 14 the results of empirical description by
function of “the double logarithm” according formula (10a) using the
data from Tables 3 and 4 are presented.

In Figs. 5-14 the constant values for the empirical description were
determined by the method of linearization (linear regression is denoted
as solid lines) and by the method of nonlinear regression (dotted lines).

Table 4
Constant values for formula (10a) calculated by using the nonlinear regression.

h [em] 5 10 20 30 40

Constant values

A —143.62 —59.46 —28.76 —1698 —967
(—14124) (—6567) (—2774) (—1523) (—882)

B 114.63 48.74 2459 15.25 961
(112.80) (53.45) (23.76) (13.88) (893)

c —2243 —956 —485 —3.03 —1.96
(—=2207)  (—1049) (—470) (—277) (—181)

R 0.994 0968 0918 0.928 0.920

Vy
[mm/s] 20 -

16

12

8 10 12 14 16 x[cm]
& Experimental points

—@— (Gauss-linearization - -®- - Gauss-nonlinear

Fig. 5. Experimental results of velocities V, and their empirical descriptions on level
h=5cm.

In these figures we can see a good agreement of both descriptions
but the better compatibility to the experimental results was obtained
by using the nonlinear regression. In Figs. 5, 7,9, 11, and 13 the compar-
ison between experimental results and the empirical description
(Gaussian function) according to formula (7a) with data given in
Tables 1 and 2 is presented. In Figs. 4, 6, 8, 10, and 12 the comparison
between the experimental results and the empirical description (“the
double logarithm” function) according to formula (10a) with using
data given in Tables 3 and 4 is presented.

Analyzing Figs. 5-14 we can notice differences in empirical descrip-
tions when determining the constant values in functions calculated by
the method of linearization (formulas 7a or 10a) and also in the case
of using the nonlinear regression. The better description was obtained
using the nonlinear regression (the dotted lines in Figs. 5-14). When
comparing the results, we can see that a special large discrepancy in em-
pirical descriptions occurred in description for lower levels (h = 5, 10,
20 cm). There are also differences both in the Gaussian description
and in the function of “the double logarithm”. In the first case we obtain-
ed symmetrical description relative to the symmetry axis of silo model,
i.e. to the location of points at x = 13 c¢m, in the other cases, the descrip-
tion is not symmetrical due to the shape of the empirical function. These
conclusions are also supported by the sum of the squares of differences

2
2 (Vyl w — Vv, mp) that is presented in Table 5a.

Yy h=5
[mm/s] 20 = cem
16 |

12 |

8 10 T 14 16
4 Experimental points
—@— Double logarithm linearization
- -®- - Double logarithm nonlinear method

Fig. 6. Experimental results of velocities V, and their empirical descriptions on level
h=5cm.
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h=10 cm

X [cm
@ Experimental points fem]
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Fig. 7. Experimental results of velocities V, and their empirical descriptions on level
h =10cm.

Now we will present the comparative analysis of the coefficients of
correlation and also corrected coefficients of correlation. Regular multi-
ple correlation coefficients R are calculated from the following formula:

where:V, — measured experimental velocity,Vyi — velocity calculated
from regression,V, — average experimental velocity,n — number of
experimental points for given height h.

Values of R were calculated from formula (R1) and given in Tables 1,
2,3 and 4, respectively.

Corrected correlation coefficient R; was calculated from the follow-
ing formula:

R =

i (vyi—\?yi>2/(n—1<)
1—

) (Vyi—Vy>2/(n—1)
1
[mml/s] 16 -

12

7 9 M 13 15 17 19

¢ Experimental points Xjem!

—— Double logarithm linearization
- -®- - Double logarithm nonlinear method

Fig. 8. Experimental results of velocities V, and their empirical descriptions on level
h =10 cm.
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Fig. 9. Experimental results of velocities V, and their empirical descriptions on level
h=20cm.

where: K — number of constants in the regression equation and K = 2
for the Gaussian method and K = 3 for the method of “double
logarithm”.

Vy
[mm/s] 12

*

8 10 12 14 16 18 20
x [cm]
& Experimental points

—— Double logarithm linearization
- -®- - Double logarithm nonlinear method

Fig. 10. Experimental results of velocities V,, and their empirical descriptions on level
h =20cm.

h=30 cm
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Fig. 11. Experimental results of velocities V,, and their empirical descriptions on level
h=30cm.
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h=30 cm

[mmis]

5 if 9 "m 13 15 17 19 21
& Experimental points X [em]
—— Double logarithm linearization

- -®- - Double logarithm nonlinear method

Fig. 12. Experimental results of velocities V,, and their empirical descriptions on level
h=30cm.

In Table 5b the coefficient of correlation R and corrected coefficients
R, are listed.

When analyzing the data given in Table 5b we can notice rather
small differences between the regular multiple correlation coefficients
and the corrected ones for the Gaussian method with the number of re-
gression constants K = 2. A little higher differences between these coef-
ficients can be noticed for the method of “double logarithm” with the
number of constants K = 3 especially for linearization.

5.2. Predicting velocities due to extrapolation
5.2.1. Predicting velocities due to the nonlinear Gaussian description

Using formula (9) for level h = 50 cm we obtain values of parame-
ters A and B as follows:

A(h =50cm) = 9.9 and B(h = 50cm) = —0.07. (13)

Substituting formula (13) to formula (7a) we obtain the predicted
values of velocities:

V, =9.9¢70™, (14)

The calculations according to formula (14) and the experimental
results are given in Table 6.
Vy 10 1
[mm/s]

5 7 9 1 13 15 17 19 21

¢ Experimental points x [cm]
—@— (Gauss-linearization - -®-- Gauss-nonlinear

Fig. 13.Experimental results of velocities V, and their empirical descriptions on level
h =40 cm.

Vy

[mm/s] 4¢ h=40 cm

12

5 7 9 1 13 16 17 19 2
& Experimental points X [om]
—@— Double logarithm linearization

- -®- - Double logarithm nonlinear method

Fig. 14. Experimental results of velocities V, and their empirical descriptions on level
h =40 cm.

5.2.2. Predicting velocities V,, due to the nonlinear description of “the double
logarithm” function

Using formula (12) we calculate the constant values A, B and C for
level z = 50 cm

A(50cm) = —5.037, B(50cm) = 5.964, C(50cm) = —1.23. (15)

Substituting the calculated values from formula (15) to formula (10a)
we obtain formula to calculate velocities as follows:

—5.037+5.964 In x—1.23 In 2
Vy —e + n x n“x (16)

The calculated values of velocities according formula (16) are
listed in Table 7. For comparison and for more clear understanding

Table 5a
Comparison of the sums of the squares of differences of velocities for points located at
8ecm<x <17 cm.

hieml (Vo —Vy, )

Gaussian method

Method of double logarithm

Nonlinear method of
Levenberg-Marquardt

Nonlinear method Linearization

of Gauss-Newton

Linearization

5 22.02 6.09 12.62 431

10 30.56 16.85 70.22 9.13

20 7.15 6.87 32.23 5.35

30 9.75 3.27 8.46 2.57

40 4.86 2.16 6.36 2.26
Table 5b

Comparative summary of correlation coefficients R and corrected correlation coefficients
SRs.

Method of description h [cm]
5 10 20 30 40
“Gauss” linearization R 0969 0947 0929 0.899 0.890
R, 0965 0942 0922 0892 0.889
“Gauss” nonlinear R 0995 0965 0934 0919 0941
R, 0991 0962 0928 0914 0937
“Double logarithm” linearization =~ R 0983 0.873 0805 0920 0.889
R, 0978 0846 0760 0.884 0.873

“Double logarithm” nonlinear R 0994 0968 0918 0928 0920
R, 0992 0961 0900 0917 0.908
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Table 6
The results of predicted and experimental velocities V), for level h = 50 cm due to the Gaussian method.
x [cm] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Vy, [mmy/s]
Vy predicted 0.32 0.8 1.72 3.23 5.27 748 9.23 9.9 9.23 748 5.27 3.23 1.72 0.8 0.32
Vyexp 64 6.6 71 75 7.5 7.5 7.6 7.6 7.6 6.6 74 6.6 6.3 58 35
Table 7
Results of the predicted values of velocities for level h = 50 cm were calculated due to the method of “the double logarithm”.
X [cm] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Vy [mm/s]
Vy predicted 5.47 6.76 7.74 8.41 8.80 8.95 8.92 8.74 8.46 8.11 7.72 729 6.86 6.42 6.0
Vyexp 6.4 6.6 7.1 7.5 7.5 7.5 7.6 7.6 7.6 6.6 74 6.6 6.3 5.8 35

of the analysis, the values Vy exp Which were calculated in Table 6, are
repeated in Table 7.

5.3. Prediction velocities of flowing grains by using interpolation

5.3.1. Prediction velocities due to the nonlinear model of the Gaussian type
Using formula (9) we also calculate the constant values A and B for
level z = 15 cm and their values are following:

A(15cm) = 14.82,B(15cm) = —0.0442. (17)

Substituting the parameters from formula (17) to formula (7a) we
obtain expression for velocity, from which we can calculate velocities
for corresponding values, x1:

Detailed calculations of velocities due to formula (18) are given in
Table 8, where we also put the experimental results for more clear
comparison and analysis.

5.3.2. Prediction velocities due to the nonlinear function of “the double
logarithm”

Using formula (12) for level z = 15 cm we obtain values of constant
parameters as follows:

A(15cm) = —40.35,B(15cm) = 33.66,C(15¢m) = —6.63. (19)

Substituting values from formula (19) to formula (10a), we obtain
the expression for velocities:

—0.0442x] _ _ 2
Vy —14.82¢ T (]8) Vy —e 40.354-33.66 In x—6.63 In x. (20)
Table 8
Results for interpolation obtained for level h = 15 cm due to the Gaussian method.
x [cm] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Vy, [mmy/s]
Vy interpol 1.7 3.02 491 731 9.96 1242 14.18 14.82 14.18 1242 9.96 731 491 3.02 1.7
Vyexp 0 04 55 8.6 10.1 10.6 105 105 105 94 9.9 8.6 55 4 0.25
Table 9
The results of predicted velocities by using interpolation for level h = 15 cm according to the method of “the double logarithm.”
x[cm] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Vy [mmy/s]
Vy interpol 0.29 117 3.02 5.73 8.69 11.18 12.66 13.0 1236 11.04 9.39 7.67 6.06 4.66 3.51
Vyexp 0 0.4 55 8.6 10.1 10.6 10.5 105 105 94 9.9 8.6 55 4.0 0.25
Table 10
Values of the flow rate.
h Xmin Xmax Flow rate Q [cm?/s]
[cm]

Gaussian method

Method of “the double logarithm”

Nonlinear Nonlinear regression according to formula (23) and Nonlinear Nonlinear regression according to formula (23) and
regression constants from Table 11 regression constants from Table 11

5 8 17 815 8.17 7.74 7.75

10 6 20 1023 10.08 10.34 10.27

20 7 21 10.16 10.47 10.48 10.59

30 4 22 1052 10.52 10.50 10.56

40 4 22 1070 10.53 10.63 10.52
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Table 11

The results obtained from formulas (23) to (24).
Method of description a b c R
Gaussian — linearization 10.315 4.581 —69.278 0.9766
Gaussian — nonlinear 10.489 3320 —74.533 0.9652
“Double logarithm” — linearization 10.069 10.275 —108.019 0.9963
“Double logarithm” — nonlinear 10.283 12.467 —125.66 0.9973

The calculations according to formula (20) are listed in Table 9,
where we also put the experimental values which were given in
Table 8.

6. Analysis of flow rate in the model

Using the values given in Tables A-E presented in the Appendix, we
determined points where velocity V;, = 0 and the coordinates of these
PoINts (Xmin, Xmax, respectively) are presented in Table 10. Then we use
formula (7a) to determine flow rate due to description of velocities by
the method of the Gaussian function.

13 Ximax
2 2
Q:/M“M+/m“m (21)
Ximin 13

where constant values A and B are presented in Table 2 (using the
nonlinear regression).

Calculating the flow rate when describing velocities by the method
of “the double logarithm” we use the following formula:

Xmux
Q _ /eA+B In x+C In zde (22)

Ximin

where the constant values A, B and C were taken from Table 4 using the
nonlinear regression. The calculations are listed in Table 10.

The flow rate Q presented in Table 10 was described by the following
function:

. b
Q:a+ﬁ+%. (23)

The constant values A, B, and C were determined by the method of
the least squares and their values are presented in Table 11, where the

Q 1
[cm?s] N
-
*
10 *
9
8 al
7
5 10 20 30 40
¢ Points b form]

Nonlinear regression Gaussian method

Fig. 15. Values of the flow rate calculated according to formula (23) for empirical descrip-
tion by applying the function of the Gaussian type — nonlinear.

Q 11
[cm“/s] .
* &
10
9
8 {
5 10 20 30 40

¢ Points b form]

Nonlinear regression method of double logarithm

Fig. 16. Values of the flow rate calculated according to formula (23) for empirical
description by applying the function type of “the double logarithm” — nonlinear.

coefficient of correlation R is also given and it was calculated according
to the formula:

(24)

where Q ; denotes the flow rate calculated according to formula (21), Qi
denotes the flow rate for various heights h calculated according
formula (23), and Q denotes the average values of the flow rate.

The results of the values of flow rate calculated according to formu-
la (23) with the constant values taken from Table 11 are presented in
Table 10.

On the base of data given in Table 10, the values of flow rate calculat-
ed according to formula (23) are presented in Figs. 15-16. In these fig-
ures the points present the flow rate calculated according to formulas
(21-22) and values Q are given in Table 10. The solid lines present the
regression curves according formula (23) and the values Q are given
in Table 10.

X~ % 21
19
17
15

13

5 10 20 30 40
h [em]

..... W t=25§ === A =255

Fig. 17. Range of the stagnant boundary at the analyzed instants of the flow.
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7. Empirical description of stagnant zones boundaries

In Table L given in the Appendix a certain set of data is determined.
They are x; and x,, where x; is the distance from the left side of the
model where velocity Vy is equal to zero and x; is the distance from
the right side of the model, where V) is also equal to zero. These
distances were appointed for time instants t = 1, 25, 50 s and for levels
h =5, 10, 20, 30, 40 cm.

On the base of values of x; and x, the difference x = x, — x; was
calculated where V, # 0. This difference was described by the linear
function:

t=1[s], X=x,—x; =7.45+0.3166h, r=0.965
t=25[s|, X=x,—x, =7.47+0.2433h, r=0988 (25)
t=50[s|, X=x,—x, =8.88+0.2485h, r=0.964.

Critical values r, = 0.878 for significance level « = 0.05 and for 5
— 2 = 3 degrees of freedom according to publication [45].
In Fig. 17 the relations (25) are presented in the graphical form.

8. Conclusions

We can draw out a few significant conclusions and discuss them.
They are the following:

1. Rejection “the thick” statistical errors calculated according to
formulas (1) and (2), which are given in Tables A, B, C, D, and E in
the Appendix, and comparing with the critical value K leads to
the conclusion that it occurs rather seldom for locations of extreme
points where velocities are close to zero.

2. Comparing data given in Tables A-E with data in Tables F-] given in
the Appendix, where the calculations of confidence interval for signif-
icant levels & = 0.05 are presented, we see that time does not have
influence to velocities.

3. Description of velocities of flow by the function of the Gaussian type,
i.e. formula (7a) and the function of “the double logarithm”, i.e.

Appendix

Statistical analysis of experimental results.

Table A
Readings at level h = 5 cm.
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formula (10a), is presented in this paper. The constant values to
these formulas were calculated by two methods, by the linearization
of these functions or by using the nonlinear regression. Figs. 5-14
confirm that much better description, when calculating the constant
values, was obtained when using nonlinear regression. Also data
given in Table 5a where the sum of squares of the differences of veloc-
ities (using the nonlinear regression), is even a few times lower than
using the linearization. Analyzing data in Table 5a we see that the bet-
ter description can be obtained by using the function of “the double
logarithm”.

4. The above conclusion is further confirmed by comparison of Table 6
with Table 7 and Table 8 with Table 9, respectively. Analyzing data
in Tables 6 and 7 we see that using extrapolation it makes it possible
to obtain results of velocities much more close to the experimental
values when using the function of “the double logarithm”. The
same conclusion can be drawn when analyzing data obtained by in-
terpolation and presented in Tables 8 and 9. Especially this conclu-
sion is true for the points located further from the symmetry axis of
the silo.

5. Analyzing the curves presented in Figs. 15-16 we can see that the
flow rate has different values in the volume up to h = 10 cm. Higher
than this level the flow rate is stabilized.

6. In Fig. 17 we analyzed the stagnant zone boundaries. They were line-
ar as presented between level h = 5 and up to h = 40 cm. This fact
was also proved by formula (25) where we see the high value of
the Pearson coefficient of correlation and it is higher than the critical
value for the significant level o« = 0.05.
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Time t [s] V, [mmy/s] for the distance from the left wall x [cm]
8 9 10 11 12 13 14 15 16 17
1 0.25 0.5 1 6 15 145 26 7 1 0.5
25 0 0 2 10 14 15 16 17 6 0.5
50 0 0.5 6 12 18 17 13 12.5 11 2.5
75 0.25 3 6 11 19 20 14 11 8 2
100 0.5 3 6 10 15 15 9 7 55 35
K 1.009 1.213 1437 1.862 1.444 1.814 1.832 1.628 1.616 1.316
a = 0.05, K, = 1.869.
Table B
Readings at level h = 10 cm.
Time t [s] V, [mm/s] for the distance from the left wall x [cm]
7 8 9 10 11 12 13 14 15 16 17 18 19
Before rejecting  After rejecting Before rejecting  After rejecting
1 1 1 1 3 6 10 15 18 17.5 13 8 35 - 1 0
25 0 0 0 0.5 4 13 145 15 145 11 10 6 6 0.5 0
50 0 1 1 6 10 11 115 12 125 13 13 9 9 3 0.5
75 0.25 2 2 9 115 12 12 12 125 12 12 105 105 6 1
100 0.5 6 - 10 10 10 10.5 10.75 9.75 8.75 8.5 7.5 7.5 5 0.5
K 0936 1.907 1414 1455 1524 1544 1315 1693 1563 1768 1392 2354 1.341 1346 1.604

a = 0.05, Ky, = 1.869.



Table C
Readings at level h = 20 cm.

0L#—€6€ (S10Z) 02 A30j0uyda [ 1apMod / D 3 ZIIMOWD]AIS |

Time ¢ [s] Vy [mmy/s] for the distance from the left wall x [cm]
3 4 5 6 7 8 9 10 11 12 13 14
Before After Before After Before After Before After Before After
rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting
1 0.5 0 1 0 2 0 3 0 4 0 5 5.5 8 9 10 10.25 10
25 0 0 0 0 0 0 0 0 0 0 1 5 8 9.5 9.5 9.75 9.75
50 0 0 0 0 0 0 0 0 0 0 3 8 9.5 9.75 9.75 9.75 9.75
75 0 0 0 0 0 0 0 0 0 0 7 9 10 10.25 10.5 10.5 10.5
K 1.728 0 1.732 0 1.732 0 2.261 0 1.732 0 1.341 1.195 1.254 1397 1.509 1354 1.633
a= 0.05,K, = 1.689.
Table C (continued)
Readings at level h = 20 cm.
Time ¢t [s] V, [mm/s] for the distance from the left wall x [cm]
15 16 17 18 19 20 21 22 23 24 25 26
Before After Before After Before After Before After Before After Before After
rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting
1 9.75 8.5 6.5 45 3 1.75 1 0 1 0 0.75 0 0.75 0 0.75 0 0.75 0
25 9.5 5 9.5 8.25 4 0 0 0 0 0 0 0 0 0 0 0 0 0
50 9.5 9.5 8.75 8.5 6 0.25 0 0 0 0 0 0 0 0 0 0 0 0
75 10.75 10.5 9 6 5 1 0 0 0 0 0 0 0 0 0 0 0 0
K 1.689 1414 1.651 1.398 1.271 1.460 1.732 0 1.732 0 1.723 0 1.724 0 1.723 0 1.723 0

sov



Table D

Readings at level h = 30 cm.

Time ¢t [s] Vy [mm/s] for the distance from the left wall x [cm]
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Before After Before After Before After Before After Before After
rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting
1 1 0 1 0 1 0 2 0 4 0 5 5.75 5.75 6 7 7.75 9 9 9
25 0 0 0 0 0 0 0 0 0 0 0 0 0.5 55 7.25 7.5 7.5 8 7.5
50 0 0 0 0 0 0 0 0 0 0 0.5 0.5 1 5 8 8.25 8.25 8.75 8.5
K 1422 0 1422 0 1414 0 1415 0 1416 0 1.410 1412 1.407 1.225 1.365 1.365 1.226 1.365 1.330
a= 005, K, = 1.412.
Table D (continued)
Readings at level h = 30 cm.
Time t [s] Vy [mmy/s] for the distance from the left wall x [cm]
14 15 16 17 18 19 20 21 22 23 24 25 26
Before After Before After Before After Before After Before After
rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting
1 9 7.75 7 6.5 5.5 4 4 2.5 2 0 2 0 2 0 2 0 2 0
25 7.75 8.25 8 8 7.5 6.5 4 0 0 0 0 0 0 0 0 0 0 0
50 9 85 8.5 9 8 8 4.75 0.5 0 0 0 0 0 0 0 0 0 0
K 1.409 1.346 1.283 1.295 0.505 1315 1412 1.380 1414 0 1414 0 1414 0 1414 0 1414 0

90t
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Table E

Readings at level h = 40 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Before After Before After Before After Before After Before After
rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting
1 1 0 2.5 0 3 0 4 0 5 0 5.75 6.5 6.5 7.5 8 8.25 9 8.75 8.5
25 0 0 0 0 0 0 0 0 0 0 0.25 2 6.25 6.25 6.75 6.75 6.75 6.5 7.25
50 0 0 0 0 0 0 0 0 0.25 0 0.25 25 3.75 5 7 7.75 8 8.25 9
K 1422 0 1416 0 1415 0 1.416 0 1.526 0 1412 1.405 1.409 1.224 1.329 1.33 1.272 1378 141
a=0.05, K, = 1412.
Table E (continued)
Readings at level h = 40 cm.
Time ¢ [s] V, [mmy/s] for the distance from the left wall x [cm]
14 15 16 17 18 19 20 21 22 23 24 25 26
Before After Before After Before After Before After Before After
rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting rejecting
1 7.25 7.25 7 6.5 6 5 4 3.25 3.25 0 34 0 2.75 0 2.75 0 2.75 0
25 6.5 6.5 6.5 7 7 6 3 0 0 0 0 0 0 0 0 0 0 0
50 8.75 8.75 8.75 85 7.75 6.5 5.5 2 0 0 0 0 0 0 0 0 0 0
K 1.359 1337 1378 1376 1.283 133 1.293 1307 2.386 0 2.386 0 1414 0 1414 0 1414 0

0L#—€6€ (S10Z) 02 A30j0uyda [ 1apMod / D 3 ZIIMOWD]AIS |
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Table F
Statistical values for calculations the confidence interval for level h = 5 cm.
Distance from the left wall x [cm] 8 9 10 11 12 13 14 15 16 17
Statistical values
vy 0.2 14 42 9.8 16.2 163 156 109 6.3 1.8
S 0.187 1319 2227 2.04 1.939 2.04 5.678 3.747 328 1.166
Vyftn,m, g \/nST1 0 0 1.11 6.97 13.51 13.47 7.72 5.70 1.75 0.18
Vy+th11-¢ Jﬂsj 0.46 323 729 12.63 18.89 19.13 2348 16.10 10.85 342
n=50=005"t_ g = 2776.
Table G
Statistical values to calculate the confidence interval for level h = 10 cm.
Distance from the left wall x [cm] 7 8 9 10 11 12 13 14 15 16 17 18 19
Statistical values
Vy 035 1.0 5.7 83 11.2 12.7 13.55 133 11.55 1.03 8.25 3.1 04
0374 0.707 3.572 2.821 1.166 1.749 2.629 2.686 1.584 1.939 1.677 2.154 0374
n 5 5 5 5 5 5 5 5 5 5 4 5 5
Vy—t,,,m,%\/% 0.17 0 0.74 438 9.58 10.27 9.90 9.57 941 7.61 5.17 0.11 0
Vy +l-11-¢ \/% 0.87 230 10.66 12.22 12.82 1513 17.20 17.03 13.69 12.99 11.33 6.09 0.92
n =25 a= 005,ts o975 = 2.776, t3, 0975 = 3.182.
Table H
Statistical values to calculate the confidence interval for level h = 20 cm.
Distance from the left wall x [cm] 8 9 10 11 12 13 14 15 16 17 18 19 20
Statistical values
vy 4 6.9 8.9 9.6 9.9 10.1 10.0 9.9 9.5 8.4 6.8 4.5 0.8
S 2.236 1.629 0.893 0451 037 0.325 0.306 0.515 0.707 1151 1.652 1.18 0.685
Vy —th11-¢ \/nSTl 0 391 7.26 8.8 922 95 944 8.95 82 633 3.77 233 0
Vy +l-11-¢ \/,.Sfl 8.11 9.89 10.54 1043 10.58 10.7 10.56 10.85 10.8 10.73 9.83 6.67 2.06
n=4aoa=005t_1 1- = 3.182.
Table I
Statistical values to calculate the confidence interval for level h = 30 cm.
Distance from the left wall x [cm] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Statistical values
Vy 1.8 2.1 24 55 74 7.8 83 84 83 86 82 7.9 7.8 7 62 63 1
S 2248 26 2336 0408 0425 0312 0632 0656 0.624 0589 0312 0217 1.027 108 165 0354 1.08
Vy—tn_11- g \/nsj 0 0 0 426 611 6.85 638 731 6.4 699 725 5.72 4.68 3.71 118 322 0
Vy +tho11— B "57] 873 1001 96 674 869 875 1022 989 102 1021 915 1008 1092 1029 1022 538 429
n=30a=005rt_ -y = 4303.
Table ]
Statistical values to calculate the confidence interval for level h = 40 cm.
Distance from the left wall x [cm] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Statistical values
vy 2.2 3.7 55 6.3 7.3 7.6 79 78 8.25 7.5 75 74 73 6.9 58 42 1.8
S 2536 2014 1242 1.021 054 0624 052 0965 0.736 0935 0935 0965 085 077 0624 1.024 1339
Vy —tho11-¢ \/nS? 0 0 1.72 3.19 566 5.7 6.15 6.7 6.72 746 643 633 633 608 5.08 3.03 027
Vy +lh1-¢ \/"ST] 9.92 9.83 9.28 941 894 95 965 89 8.88 9.14 857 8.47 827 772 652 537 353
n=3,a=0051t_1 1-g=4303
Table K
Values of statistics from formulas (5) and (6) with using data from Tables A-E.
n; 1B-—nm=x 1B+nm=x Time ¢ for levels h [cm]
5 10 20 30 40
1 12 14 0.200 0.374 0.36 0 0.583
2 11 15 0451 0.356 1.519 0.197 0431
3 10 16 1.280 1.169 1.825 0.434 0.246
4 9 17 0454 1.161 1373 1.222 0
5 8 18 1.651 1.744 1.838 0.68
6 7 19 0.189 3.179 0.305
7 6 20 4.454* 0313
8 5 21 0.454* 0.296
Ler 0051y 13,y —2 2306 2.306 2447 2.447 2.776
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Table L
Statistical data for determining the stagnant zone boundaries.
Height h [cm] Parameters of regression values x; x» Time ¢ [s]
1 25 50
X vy X v, X vy X vy X v, X vy
1 2 3 4 5 6 7 8 9 10 11 12 13 14
8 0.25 14 26 9 0 14 16 9 0.5 14 13
9 0.5 15 7 10 2 15 17 10 6 15 125
10 1 16 1 11 10 16 6 11 12 16 11
11 6 17 05 12 14 17 0.5 12 18 17 25
a —14.93 —46.0 9.9 —52.3 60.9
b 1.775 5.0 —5.75 5.83 —3.30
A —122.11
B 2015.8
r 0.841 0915 0.977 —0930 0.998 —0.868
X1 Xo 841 16.51 9.2 1722 8.94 18.45
10 8 1 15 13 8 0 16 10 7 0 16 13
9 3 16 8 9 0.5 17 6 8 1 17
10 6 18 1 10 4 18 0.5 9 6 18 3
11 10 19 0 11 13 19 0 10 10 19 0.5
a —235 —36.0 —255
b 3.00 425 35
A —50.84 —5835 —69.63
B 949.47 1088.85 1324.68
r 0.989 0.991 0.912 0.971 0.973 0.992
X1 Xa 7.833 18.68 8.47 18.66 7.29 19.02
20 7 0 18 45 7 0 17 9.5 7 0 18 8.5
8 5 19 3 8 1
9 55 20 1.75 9 5 19 4 9 8 20 0.25
10 8 21 0 10 8 20 0 10 9.5 21 0
a 31.075 66.03
b —1.475 —3.28
A 25.53 26.35 33.23 —57.42
B —174.54 —190.83 —234.68 1187.58
r —0.963 —0.998 —0.955 —0978 —0.986 0.957
X1 Xa 6.84 21.07 7.24 20.16 7.06 20.68
30 4 0 19 4 6 0 18 7.5 4 0 19 8
5 5 20 4 7 0.5 19 6.5 5 0.5 20 4.75
6 5.75 21 25 8 5.5 20 4 6 0.5 21 0.5
7 5.75 22 0 9 7.25 21 0 7 1 22 0
a 30.30 —16.75 53.25 —1.15
b —135 2.675 —2.50 0.30
A 14.50 —5491
B —54.63 1190.09
r —0915 —0.923 0.956 —0.966 0.949 0.972
X1 Xa 3.77 2244 6.26 213 3.83 21.67
40 4 0 19 5 4 0 18 7 4 0 19 6.5
5 5.75 20 4 5 0.25 19 6 5 0.5 20 5.5
6 6.5 21 3.25 6 2 20 3 6 2.5 21 2
7 6.5 22 0 7 6.25 21 0 7 3.75 22 0
a 35.35 —9.15 50.8 —5.60 50.65
b —1.575 2.05 —240 1.325 —230
A 16.38
B —61.601
r —0.909 —0.940 0.916 —0.980 0.978 —0.981
X1 Xo 3.76 2244 4.46 2117 423 22.02
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