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This paper is a third of a series of the threewhere eccentric cases of flow in silomodels recorded by theDPIV tech-
nique are presented and discussed in detail. The methodology of empirical descriptions of velocities, flow rate
and stagnant zone boundaries on the base of registered velocity fields in eccentric filling and discharge in 2D
silo model was discussed. In previous two papers [1,2] we analyzed also eccentric flows but with different loca-
tions of the outlet. It was stated that in practice even tiny eccentricity of filling or discharge processesmay lead to
quite an unexpected behavior of the silo structure. During asymmetrical processes, flow patterns andwall stress-
es may be quite different. It is therefore crucial to identify how flow patterns developed in the material during
eccentric filling or discharge and to determine both the flow rate and wall stresses occurring under such state
of loads. Thus,we discuss here the third case of discharge— located in the center of the silo bottom. A comparison
of these three cases of discharge mode will be presented in the next paper. Empirical descriptions of eccentric
flow velocities in silo model by the linear and nonlinear regressions are presented here with specific functions
like the Gaussian function and “the double logarithmic function”. In both methods the velocity was also
descripted by linearization and in the Gaussian method also by the nonlinear method of Gauss–Newton and in
the case of the method of double logarithm — the nonlinear method of Levenberg–Marquardt was applied.
Velocities were predicted by using interpolation due to the nonlinear model of the Gaussian type and to the
nonlinear function of “the double logarithm”.

© 2014 Elsevier B.V. All rights reserved.
1. Literature review

Eccentricity is always a dangerous factor influencing to the silo
structure. Technological processes canbe disruptedwhile any eccentric-
ity occurred. International Standards usually relate to axial symmetric
states of stresses and even avoid defining discharge pressures and
flow patterns because of continuing uncertainties defining the flow
channel geometry and wall pressures under eccentric discharge or the
values of increased coefficients of horizontal pressure during eccentric
discharge [3,4]. In [3–6] we read comments on the eccentricity of the
outlet, on the flow channel geometry and the wall pressure under ec-
centric discharge. Eccentric discharge is described as a flow pattern in
the stored solid arising frommoving solid being asymmetrically distrib-
uted relative to the vertical centreline of the silo. This normally arises as
a result of an eccentrically located outlet but can be caused by other
asymmetrical phenomena which are not clearly defined. As it was
commented in [1] calculations for flow channel geometry are required
for only one size of flow channel contact with the wall, which should
lamowicz), a.czech@pb.edu.pl
be determined for ΘC = 35° and wall pressures under eccentric dis-
charge are also defined and discussed in [1]. Researchers tried to make
approaches to develop designing of bins under eccentric discharge
[7–9] and Carson [10] in detail presented the issue of eccentricity as
one of the major causes of hopper failures. Eccentricity of the flow to
the silo axis causes the pressure patterns to become much more
complex than in centric cases. In the field of silo investigations three
main issues are usually analyzed: pressures under eccentric discharge,
flow patterns and stagnant zone boundaries.

Works on eccentric discharge have been published for many years
and a few researchers have dealt with this complicated problem. In [1]
one canfind a detail discussion of investigations in silos during eccentric
discharge, silo loads and wall loads, measurements of wall loads when
unloaded eccentrically, the effect of eccentric unloading in a model bin
for different unloading rates, the effect of eccentricity and ways of dis-
charge in silo, flow patterns in a silo with symmetrical and eccentric
outlet. There are works [7–13] where authors investigated the behavior
of silos under eccentric discharge, identified flow patterns and stresses
on the wall during centric and eccentric discharges. They also made
measurements of the wall pressures under eccentric discharge, investi-
gated discharge and the eccentricity of the hopper influence on silo wall
pressures, and measured experimentally the heights of the stagnant
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zones for two kinds of granular materials after hopper eccentric and
centric discharges. Theoretical analyses were made using the kinematic
model, proposed by Nedderman and Tüzün [10,13,14], for filling and
discharge — centrally and eccentrically. Further numerical investiga-
tions were conducted in [15,16] by applying FEMmodeling in the anal-
ysis of influence of hopper eccentricity on wall pressures or a buckling
strength of steel silo subject to code specified pressures for eccentric
discharge. Another field of investigationswas related to localized defor-
mation pattern in granularmaterials, investigating shear localizations in
granular materials numerically and compared the obtained results to
experimental data [17]. In [18] one can find a long list of references
concerning investigation of eccentric discharge.

Investigation of flow patterns and wall stresses in silos and other
hoppers is usually carried out on laboratory models. Many different
measurement techniques have been used in such studies: visual mea-
surements through transparent walls, colored layers and photography,
colored layers and dissection after freezing the flow with paraffin wax,
photographic or video techniques, and tracer techniques using X-rays
and radio pills and insertion of markers to measure residence times
[18]. In laboratory tests very significant scale effects in silo flow and
pressures were reported in [19–23]. However, almost all of these tech-
niques are not viable at full scale. Many tests on full scale silos were
made to measure wall pressures [24]. There are a few examples given
in literature where themeasurements of flow patterns were performed
on line [18,25,26]. Such investigations are very expensive, due not only
to the enormous size of the silo but also to the difficulties in accessing
the structure. Because of the difficulties of access at natural scale such
as opaque walls, opaque solids, surface covered with dust and intrusive
investigation techniques, such as the penetration of the wall, rarely
acceptable by silo owners, model silo studies seem to be very useful in
the recognizing flow patterns. Though, the challenge of observing flow
processes at full scale remains considerable. The flow inside the silo
has been poorly identified till today and the investigation of flow
modes inside the silo is almost impossible.

Silos are structures having round horizontal cross sections. Usually
all laboratory models are flat and only flat flow is investigated. There
are also round laboratory models but in this case, it is much more
difficult to measure stagnant zone boundaries. In such models usually
the problem of flow modes and determining wall pressures are made.

2. Experimental procedure

To register velocities of flowing grains we applied the DPIV (Digital
Particle Image Velocimetry) technique which made it possible to
identify the eccentric flow in the plane flat-bottomed model silo made
of Plexiglas. Two other eccentric cases of the flow were discussed in
[1,2]. The images of the flowing material were recorded by a high-
resolution camera and evaluated using theDPIV technique. The adopted
DPIV technique was based on the optical flow algorithm, which has
been found to be most reliable for granular flow images. In [43] the
authors presented a detailed description of the OF-DPIV, including its
development and application. The experimental setup used for the
flow analysis consisted of a transparent acrylic plastic box, a set of
illumination lamps, and a high-speed CCD camera (PCO1200HS) with
an objective 50 mm lens produced by PCO AG, Kelheim, Germany
[http://www.pco.de/high-speed-cameras/pco1200-hs/]. The transpar-
ent flat-bottom silo model had a height 800 mm, a depth of 100 mm
and a width of 260 mm. The model was placed on a stand and granular
material was supplied through a box suspended above the model. The
bottom of the supplying box contained a sieve and the box was filled
with flax seeds to 2/3 of its height. The model was filled close to the
left wall. The discharge outlet was located centrally at the bottom of
the silo. The width of the outlet was 10 mm. In order to evaluate
transient velocity fields, long sequences of 100–400 images were
taken at variable time intervals, covering the whole of the discharge
time. The DPIV technique used here produced velocity fields for the
full interrogation area. The velocity profiles obtained inside the quasi
two-dimensional silo were smooth and free of shock-like discontinu-
ities. The flax seeds showed some effects of static electricity when
flowing and sliding over the transparent acrylic plastic. The granular
material was introduced in a form of a uniform stream into the silo
model to obtain uniform and repeatable packing of the material with
no particle segregation. The evolution of the flow region and the traces
of flowing particles were evaluated from recorded images. Pairs of dig-
ital short exposure images were taken to describe how the velocity field
varies in the flowing material. This data was used in empirical descrip-
tion of the flow. The properties of the amaranth seed used in the exper-
iments were: wall friction against transparent Plexiglas φw=26°, angle
of internal friction φe = 25° granular material density deposited
through a pipe with zero free-fall 746 kg/m3 at 1 kPa and 747 kg/m3

at 8 kPa, Young's modulus 6.11 MPa. The values of the angle of in-
ternal friction for the flax-seed are taken from the Polish Standard
PN-89/B-03262. Sequences of 12-bit images with the resolution of
1280 × 1024 pixels were acquired by Pentium 4 based personal com-
puter using IEEE1394 interface. The system allowed acquiring up to
1000 images at time interval of 1.5 ms (667 fps). The velocity field
was evaluated for triplets of images using the DPIV based on the Optical
Flow technique. Dense velocity fields with vectors for each pixel of the
image were obtained and used for further evaluation of the velocity
profiles, velocity contours and streamlines. The term “streamline” is de-
fined as a direction of theflow of different particles at the same time. In-
trinsic resolution of the PIV technique is limited by the size of the area of
interest that is used in the application of the cross correlation algorithm
between subsequent images and this is generally one order of magni-
tude larger than a single pixel. The aim of the present investigation is
to explore the possibility of using the Optical Flow technique based on
PIV in measuring granular material flow velocity. In granular material
flowoneusually visualizes a track of individual particles, not necessarily
coinciding with the streamline. Such tracks were obtained by Choi et al.
[11], who used a high-speed imaging technique to trace the position of
single particles in granular materials. Velocity profiles obtained that
way for the flow of granular material inside a quasi-two-bottomed
silo were smooth and free of shock-like discontinuities. In contrast,
theDPIV technique used here produces velocityfield for the full interro-
gation area, and this can be used to predict the natural track of
individual particles.

In general, this techniquewas applied in fluidmechanics and its first
applications to granularmaterial flowwere presented by [27,28]. One of
the first successful attempts to apply the PIV technique to granular
matter was described in [28–35] and reported the use of the PIV tech-
nique in their experiments to obtain information on local velocities of
particles at several elevations in densely packed materials. Ostendorf
and Schwedes in [30] combined PIV measurements with wall normal
stress measurements at different points of time in a large scale silo.

Observations of the discharge process allow us to understand the
behavior of theflowingmaterial. Asmentioned above, differentmeasure-
ment techniques havebeenused in investigations offlow in silomodels. A
number of experimental works have been focused to measure flow pat-
terns. Optical techniques are commonly used in the analysis of velocity
profiles near the transparent silo walls. The X-ray technique was fre-
quently applied to obtain information from deeper flow layers [36,37].
Also, other non-invasive measurement techniques were applied to regis-
ter granular flow, density and velocity fields in flowing zones, among
others spy-holes, radio transmitters, positron emission [38],magnetic res-
onance imaging, radioactive tracers, and ultrasonic speckle velocimetry.
More details on different techniques used in investigations of granular
flow in small models can be found in references given in [28,38–42].

The case discussed here is recognized as eccentric filling but the po-
sition of the outlet that was symmetrically located was shown in Fig. 1.
This location of the outlet produces a very interesting flowmode of the
material, becoming symmetrical very quickly after opening the outlet.
Despite eccentric feeding, just after 25th of the flow, the material
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Fig. 1. Velocity distributions in the model while eccentric filling on the left and discharge in the center [34].
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tends to form a symmetric flow. Soon after the initiation it is possible to
observe nearly uniform flow channel for the entire height of the silo. In
the plug flow region the velocity vectors in the initial phase of the flow
are still not vertical but soon they pass directly and vertically to the out-
let. In the upper part of theflow the velocity vectors indicate converging
lateral flow towards the flowing zone. It seems that the central outlet
induced the formation of the central plug flow.

The technique DPIV provides wide possibilities to obtain various
data on the flow.We present velocity distributions on the various levels
in the model (cf. Fig. 2). The profiles of vertical velocity components
across the cavity were obtained at different heights indicated in the
legend in Fig. 2 and at time steps of 1 s, 25 s, 50 s, 75 s, and 100 s after
the beginning of the experiment. In Fig. 2a, at h=5 cmabove the outlet
(the red line) one can observe the shape of the velocity profile. This
profile is a special one because in each case of eccentric flow it behaves
individually especially at the beginning of the flow [1,2]. It means that
the central position of the outlet makes the flow symmetric soon after
the flow starts. The filling feed does not play a significant role. The
other profiles form a bunch of functions on the due levels. In the case
of central discharge, this velocity profile reaches its maximum value in
the flowing zone and becomes symmetric. Fig. 3 presents an evolution
in time of the stagnant zone boundaries for three eccentric cases.

Three analyzed eccentric flows are very complex, especially due to
appearance of localisation of deformation between flowing and station-
ary solid. Very narrow zones occur between flowing and stagnant
material. These narrow zones are of intense shearing. Our investigation
was performed in themodel with smoothwalls thus the shear zones do
not form close to thewall. They can also occur between thewall and the
stagnantmaterial but in the casewhen the wall is rough. The registered
deformationfields in the flowingflax seed in the planemodel during ec-
centric flow and obtained directions of deformation provided valuable
information on the mechanism of the granular behavior inside the
silo. The knowledge of the range of deformation fields is the reason to
perform theoretical description of shear localisation in flow processes.
And this can be presented in our future works.

3. Experimental results and statistical descriptions

The main objective of this paper is to present statistical analysis of
experimental results obtained in the eccentric flow case and searching
for empirical description relating to experimental readings.

3.1. Results of velocity Vy for time instants t = 1, 25, 50, 75 s

Results of experimental measurements of velocityVyi for level h=5,
10, 20, 30, 40 cm and for time instants t = 1, 25, 50, 75 s are given in
Tables A–E in the Appendix.
3.2. Rejection of “thick errors”

On the base of data given in Tables A–E (given in the Appendix) we
calculate the average vertical velocity Vy for different localizations of
points x and the standard deviation S using the formula:

Vy ¼
Xn

i¼1

Vyi

n

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Vyi
−Vy

� �2

n

vuut ð1Þ

where: Vy denotes the average values of velocities, Vyi
is the flow

velocity mm/s, n is the number of time instants taken for the analysis
and S is the standard deviation.

One of the methods, how to estimate the presence of so called
“thick” errors in our experimental data, is to calculate statistics K
according to formula (2):

K ¼
Vyi

−Vy

���
��� max

S
: ð2Þ

Values of statistics K are calculated on the base of data given in
Tables A–E in the Appendix. The critical value of this statistics Kcrit for
the significance level α = 0.05 will be taken from [44]. If the value of
statistics K is lower than the critical value Kcrit then we do not have
any reason to think that so called “thick” errors exist in our experimen-
tal data. And vice versa, if the value of the statistics exceeds the critical
value Kcrit then we should reject such experimental readings.

3.3. Investigation of influence of time on velocity of flowing grains in the
model

On the base of data given in Tables A–E presented in the Appendix,
the confidence intervals for average values of velocities were calculated
according to formula:

Vy−tn−1; 1−α
2

Sffiffiffiffiffiffiffiffiffiffiffi
n−1

p b μ b Vy þ tn−1; 1−α
2

Sffiffiffiffiffiffiffiffiffiffiffi
n−1

p ð3Þ

where:Vy and Swere calculated according to formula (1), tn − 1,1 − α/2 is
the quantile of t-Student distribution for significance level α = 0.05
[44], and μ denotes the average value of population for n − 1 numbers
of freedom.

The calculations presented above are given in Tables F–J in the
Appendix.

image of Fig.�1
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Comparing data given in Tables A–E with data given in Tables F–J
presented in the Appendixwe can state, that there is no reason to reject
“zero hypothesis”, that means that time is not an important factor
influencing on the velocity for any given point x.

3.4. Investigation of velocity values for points located symmetrical to the
silo symmetry axis

The axis of symmetry of the silo model is located in the distance at
x = 13 cm from the lateral edge of the model. Symmetrical locations
of points are for abscissa 13− ni and 13+ ni, where ni is the readings
of velocities for points located on both sides of the axis of symmetry
of the silo model.

We assume “the zero hypothesis” (H) and “the opposite hypothesis”
(H1):

H : μ13−ni
¼ μ13þni

; H1 : μ13−ni
≠ μ13þni

and in this way we verify the hypothesis of the average value of two
populations. To do this we calculate statistics t in the case of the same
Fig. 2.A–E) Velocity profiles for theflow offlax-seed obtained for A) eccentric filling on the left a
G–J) velocity profiles on selected levels inside the model [34].
number of repetitions:

t ¼
X13−ni

− X13þni

���
���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S213−ni
þ S213þni

q ffiffiffiffiffiffiffiffiffiffiffi
n−1

p
ð4Þ

or in the case of different numbers of repetitions of experiments by
formula (5):

t ¼
X13−ni

−X13þni

���
���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n13−ni
S213−ni

þ n13þni
S213þni

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n13−ni

n13þni
n13−ni

þ n13þni
−2

� �
n13−ni

þ n13þni

vuut
:

ð5Þ

The critical value in this case at the level of significance α = 0.05
according to the t-Student is tcritical ¼ t0:05;13−ni ;13þni

.
In this case when the value of statistics calculated from formula (4) to

(5) is higher than the critical value then the hypothesis H should be
rejected, in the opposite case there is no reason to reject the hypothesis.

Before calculating formulas (4) and (5), we have found the homoge-
neity of the variance for various heights h in the model using the
nd discharge in the central part of the bottom; F) variation of velocity–distribution in time,

image of Fig.�2


Fig. 2 (continued).
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Hartley's statistics Fmax and data given in Tables F, G, H, I and J in the
Appendix:

Fmax ¼
S2max

S2min

: ð6Þ

In this case for statistics Fmax from formula (6) the critical value with
the significance level α=0.05 according to the distribution Fmax equals
Fmax critical = Fmax;0.05;n − 1;k, where n denotes the number of repetitions
of experiments for the given height h, k denotes the number of compar-
isons of experimental readings for the given heights h.

In the case when the value of statistics calculated from formula (6)
is higher than the critical value then the hypothesis of equality of
variances can be rejected, in the other cases there is reason to reject
the hypothesis of equality of variances.
Fig. 3. Experimental measurements of the stagnant zone boundaries in the flowing flax
seed in the case of eccentric filling and discharge: a) central, b) on the right, and c) on
the left [34].
Calculations made according to formulas (4) and (5) are summa-
rized in Table K given in the Appendix.

4. Empirical description of velocityVy of flowing grains in themodel

We present two types of empirical descriptions of velocities of
flowing grains in the silo model. The values of calculated coefficients
of correlation confirm our choice of the function. If they are close to
“1” or “−1” then empirical description is more precise.

4.1. Description by Gaussian bell curve

4.1.1. Determining the constants in Gaussian bell curve by linearization
The proposed empirical function is of the following form:

Vy ¼ A eBx
2
1 ð7aÞ

where: x1 = |x − 13| cm, and Vy ¼
Vy; 13−niþ Vy;13þni

2 .
When calculating the logarithm (7a) we obtain:

ln Vy ¼ ln Aþ Bx21: ð7bÞ

Denoting that

ln Vy ¼ Y ; ln A ¼ a; x21 ¼ X1 ð7cÞ

we obtain

Y ¼ aþ BX1: ð7dÞ

FromEq. (7d)we determine parameters a and B using themethod of
the least squares and then the value A = ea.

It is crucial to be convinced if the proposed formula (7a) is correct.
To do this we can put experimental points on the functional scales.

image of Fig.�3
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Table 1
The constant values A and B from formula (7a) after nonlinear regression.

h [cm] 5 10 20 30 40

Constant values

A 20.10
(19.68)

15.70
(16.14)

10.59
(11.12)

9.75
(8.85)

8.95
(9.30)

B −0.1764
(−0.1569)

−0.075
(−0.102)

−0.0242
(−0.0288)

−0.0260
(−0.0431)

−0.0189
(−0.02857)

r −0.992 −0.989 −0.969 −0.962 −0.935
R 0.969 0.947 0.929 0.899 0.890
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Tracking the functional scale on horizontal ax x1
2 and on the vertical ax

lnVy we can see that (Fig. 4a), the experimental points are put along
the straight line. It can be proved for heights h = 5, 10, 20, 30, 40
[cm]. The coefficient of correlation confirms this for the straight line pre-
sented in formula (7d) and it is given in Table 1 as |r|.

The constants A and B were calculated by the least square method
after linearization of formula (7a) and using data given in Tables A–E
in the Appendix. Their values are listed in Table 1.

The constants A and B from Table 1 after the first regression
depended on height h = z according to formula (8) and are given in
Table 1 in brackets.

A ¼ 23:90−0:9124 zþ 0:01369 z2

B ¼ −0:2239þ 0:0146 z−0:0002436 z2
ð8Þ

In this way using formulas (7a) and (8) we can calculate the flow
velocity in any given point on demand position of this point and on
the distance of the point from the axis of symmetry.

In Table 1 the absolute values of the coefficient of correlation r for the
straight line from formula (7d) and with velocity Vy from formula (7a)
are listed. The coefficients of correlation R for all velocities Vyi are
presented also in Table 1.

4.1.2. The Gaussian description — nonlinear regression
The constant values A and B from formula (7a) we can calculate by

the Gauss–Newton method and with the nonlinear regression using
the initial values of these constants from The constants A and B (given
in Table 2) after the first regression depended on height z= h according
to formula (9) — a parabola of the second order.

A ¼ 19:76−0:6187 zþ 0:00843 z2

B ¼ −0:1635þ 0:01005 z−0:0001624 z2
ð9Þ

The values A and B after the second regression for level z = h are
given in Table 2 in brackets.
Fig. 4. A. Visualization of formula (7a) in the functional scales. B. Graphical form of
derivatives from Eq. (10e) for h = 5 cm.
4.2. Description of velocity Vy of flowing grains by “the function of double
logarithm”

4.2.1. Determining constants for the function of “double logarithm” by
linearization

Theproposed empirical function for velocity is of the following form:

Vy ¼ eAþB ln xþC ln 2x
: ð10aÞ

Calculating the logarithm of Eq. (10a) we obtain:

ln Vy ¼ Aþ B ln xþ C ln 2x: ð10bÞ

Denoting that

ln Vy ¼ Y and ln x ¼ X ð10cÞ

we obtain

Y ¼ Aþ BX þ CX2
: ð10dÞ

It is important to be convinced that if the description given in
Eq. (10a) is made correctly we should verify if the description (10d) is
correct. Eq. (10d) presents a parabola of the second order and the deriv-
ative dY

dX presents the straight line. To check if the points whichwere cal-
culated are put along the straight line we draw parabola through three
successive points i, j, k, by using the Lagrange'a interpolating polynomial
and then we calculate the following derivative:

dY
dX

X j

� �
¼ X j − Xk

Xi−X j

� �
Xi –Xkð Þ

Yi þ
2X j −Xk− Xi

X j−Xi

� �
X j –Xk

� �Y j

þ X j−Xi

Xk−Xið Þ Xk –X j

� � Yk: ð10eÞ

After calculating the derivative of Eq. (10e) we saw that the points
are put close to the straight line (Fig. 4b).

We can present another graphical forms of Eq. (10e) for other levels
h=10, 20, 30, 40 cm.We can calculate the derivatives for these heights
and create the straight lines.

The constant values A, B and C by linearization of formula (10a)were
calculated by the least square method and are given in Table 3.
Table 2
The constant values A and B from formula (7a) after the nonlinear regression.

h [cm] 5 10 20 30 40

Constant values

A 17.14
(16.88)

14.06
(14.42)

10.74
(10.76)

9.04
(8.79)

8.39
(8.50)

B −0.132
(−0.117)

−0.0573
(−0.0791)

−0.0280
(−0.0272)

−0.0200
(−0.0078)

−0.015
(−0.021)

R 0.992 0.965 0.934 0.919 0.941
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Fig. 5. Experimental results of velocities Vy and their empirical descriptions on level
h = 5 cm.

Table 3
The constant values from formula (10a) calculated by using the linear regression.

h [cm] 5 10 20 30 40

Constant values

A −136.37
(−141.84)

−81.53
(−70.36)

−41.84
(−34.61)

−15.47
(−22.70)

−11.05
(−16.74)

B 109.71
(114.29)

67.34
(57.90)

35.38
(29.71)

14.41
(20.31)

10.97
(15.61)

C −21.62
(−22.55)

−13.44
(−11.49)

−7.05
(−5.96)

−2.94
(−4.12)

−2.28
(−3.20)

R 0.983 0.873 0.805 0.920 0.889
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The constant values A, B and C given in Table 3 depended on
height z = h according to formula (11):

A ¼ 1:130−714:88
1
z
; r ¼ −0:987

B ¼ 1:513þ 563:86
1
z
; r ¼ 0:985

C ¼ −0:434−110:60
1
z
; r ¼ −0:985:

ð11Þ

The values calculated from formula (11) are given in Table 3 in
brackets.

4.2.2. Description of velocity Vy using the nonlinear regression
The constant values A, B and C from formula (10a) we can calculate

by the Levenberg–Marquardtmethod andwith thenonlinear regression
using the initial values of these constants given in Table 3. Their values
after the nonlinear regression are presented in Table 4.

The constant values A, B and C given in Table 4 depended on
height z = h according to formula (12).

A ¼ 10:696−756:66
1
z
; r ¼ −0:998

B ¼ −5:906þ 593:51
1
z
; r ¼ 0:998

C ¼ 1:089−115:77
1
z
; r ¼ −0:988:

ð12Þ

The values of these parameters calculated for z= h after the second
regression are listed in Table 4 in brackets.

5. Analysis of empirical results

5.1. Comparison of empirical description with experimental results

In Figs. 5, 7, 9, 11, and 13 the comparison of experimental results
with empirical description by the function of Gaussian type according
to formula (7a) and using data given in Tables 1 and 2 is presented.

In Figs. 6, 8, 10, 12, and 14 the results of empirical description by
function of “the double logarithm” according formula (10a) using the
data from Tables 3 and 4 are presented.

In Figs. 5–14 the constant values for the empirical description were
determined by the method of linearization (linear regression is denoted
as solid lines) and by the method of nonlinear regression (dotted lines).
Table 4
Constant values for formula (10a) calculated by using the nonlinear regression.

h [cm] 5 10 20 30 40

Constant values

A −143.62
(−141.24)

−59.46
(−65.67)

−28.76
(−27.74)

−16.98
(−15.23)

−9.67
(−8.82)

B 114.63
(112.80)

48.74
(53.45)

24.59
(23.76)

15.25
(13.88)

9.61
(8.93)

C −22.43
(−22.07)

−9.56
(−10.49)

−4.85
(−4.70)

−3.03
(−2.77)

−1.96
(−1.81)

R 0.994 0.968 0.918 0.928 0.920
In these figures we can see a good agreement of both descriptions
but the better compatibility to the experimental results was obtained
by using the nonlinear regression. In Figs. 5, 7, 9, 11, and 13 the compar-
ison between experimental results and the empirical description
(Gaussian function) according to formula (7a) with data given in
Tables 1 and 2 is presented. In Figs. 4, 6, 8, 10, and 12 the comparison
between the experimental results and the empirical description (“the
double logarithm” function) according to formula (10a) with using
data given in Tables 3 and 4 is presented.

Analyzing Figs. 5–14 we can notice differences in empirical descrip-
tions when determining the constant values in functions calculated by
the method of linearization (formulas 7a or 10a) and also in the case
of using the nonlinear regression. The better description was obtained
using the nonlinear regression (the dotted lines in Figs. 5–14). When
comparing the results,we can see that a special large discrepancy in em-
pirical descriptions occurred in description for lower levels (h = 5, 10,
20 cm). There are also differences both in the Gaussian description
and in the function of “the double logarithm”. In the first casewe obtain-
ed symmetrical description relative to the symmetry axis of silo model,
i.e. to the location of points at x=13 cm, in the other cases, the descrip-
tion is not symmetrical due to the shape of the empirical function. These
conclusions are also supported by the sum of the squares of differences

∑ Vyi exp
−Vyi emp

� �2
that is presented in Table 5a.
Fig. 6. Experimental results of velocities Vy and their empirical descriptions on level
h = 5 cm.

image of Fig.�6
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Fig. 9. Experimental results of velocities Vy and their empirical descriptions on level
h = 20 cm.

Fig. 7. Experimental results of velocities Vy and their empirical descriptions on level
h = 10 cm.
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Now we will present the comparative analysis of the coefficients of
correlation and also corrected coefficients of correlation. Regular multi-
ple correlation coefficients R are calculated from the following formula:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−

Xn
1

Vyi
−V̂yi

� �2

Xn
1

Vyi
−Vy

� �2

vuuuuuuut
ðR1Þ

where:Vyi
— measured experimental velocity,V̂yi

— velocity calculated
from regression,Vy — average experimental velocity,n — number of
experimental points for given height h.

Values of Rwere calculated from formula (R1) and given in Tables 1,
2, 3 and 4, respectively.

Corrected correlation coefficient Rs was calculated from the follow-
ing formula:

Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−

Xn
1

Vyi
−V̂yi

� �2
= n−Kð Þ

Xn
1

Vyi
−Vy

� �2
= n−1ð Þ

vuuuuuuut
ðR2Þ
Fig. 8. Experimental results of velocities Vy and their empirical descriptions on level
h = 10 cm.
where: K — number of constants in the regression equation and K = 2
for the Gaussian method and K = 3 for the method of “double
logarithm”.
Fig. 10. Experimental results of velocities Vy and their empirical descriptions on level
h = 20 cm.

Fig. 11. Experimental results of velocities Vy and their empirical descriptions on level
h = 30 cm.
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Fig. 14. Experimental results of velocities Vy and their empirical descriptions on level
h = 40 cm.

Table 5a
Comparison of the sums of the squares of differences of velocities for points located at
8 cm ≤ x ≤ 17 cm.

h [cm] ∑ Vyi exp
−Vyi emp

� �2

Gaussian method Method of double logarithm

Linearization Nonlinear method
of Gauss–Newton

Linearization Nonlinear method of
Levenberg–Marquardt

Fig. 12. Experimental results of velocities Vy and their empirical descriptions on level
h = 30 cm.
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In Table 5b the coefficient of correlation R and corrected coefficients
Rs are listed.

When analyzing the data given in Table 5b we can notice rather
small differences between the regular multiple correlation coefficients
and the corrected ones for the Gaussianmethodwith the number of re-
gression constants K=2. A little higher differences between these coef-
ficients can be noticed for the method of “double logarithm” with the
number of constants K = 3 especially for linearization.

5.2. Predicting velocities due to extrapolation

5.2.1. Predicting velocities due to the nonlinear Gaussian description
Using formula (9) for level h = 50 cm we obtain values of parame-

ters A and B as follows:

A h ¼ 50cmð Þ ¼ 9:9 and B h ¼ 50cmð Þ ¼ −0:07: ð13Þ

Substituting formula (13) to formula (7a) we obtain the predicted
values of velocities:

Vy ¼ 9:9 e−0:07x21 : ð14Þ

The calculations according to formula (14) and the experimental
results are given in Table 6.
Fig. 13.Experimental results of velocities Vy and their empirical descriptions on level
h = 40 cm.
5.2.2. Predicting velocities Vy due to the nonlinear description of “the double
logarithm” function

Using formula (12) we calculate the constant values A, B and C for
level z = 50 cm

A 50cmð Þ ¼ −5:037;B 50cmð Þ ¼ 5:964;C 50cmð Þ ¼ −1:23: ð15Þ

Substituting the calculated values from formula (15) to formula (10a)
we obtain formula to calculate velocities as follows:

Vy ¼ e−5:037þ5:964 ln x−1:23 ln 2x
: ð16Þ

The calculated values of velocities according formula (16) are
listed in Table 7. For comparison and for more clear understanding
5 22.02 6.09 12.62 4.31
10 30.56 16.85 70.22 9.13
20 7.15 6.87 32.23 5.35
30 9.75 3.27 8.46 2.57
40 4.86 2.16 6.36 2.26

Table 5b
Comparative summary of correlation coefficients R and corrected correlation coefficients
s RS.

Method of description h [cm]

5 10 20 30 40

“Gauss” linearization R 0.969 0.947 0.929 0.899 0.890
Rs 0.965 0.942 0.922 0.892 0.889

“Gauss” nonlinear R 0.995 0.965 0.934 0.919 0.941
Rs 0.991 0.962 0.928 0.914 0.937

“Double logarithm” linearization R 0.983 0.873 0.805 0.920 0.889
Rs 0.978 0.846 0.760 0.884 0.873

“Double logarithm” nonlinear R 0.994 0.968 0.918 0.928 0.920
Rs 0.992 0.961 0.900 0.917 0.908
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Table 6
The results of predicted and experimental velocities Vy for level h = 50 cm due to the Gaussian method.

x [cm] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Vy [mm/s]

Vy predicted 0.32 0.8 1.72 3.23 5.27 7.48 9.23 9.9 9.23 7.48 5.27 3.23 1.72 0.8 0.32
Vy exp 6.4 6.6 7.1 7.5 7.5 7.5 7.6 7.6 7.6 6.6 7.4 6.6 6.3 5.8 3.5

Table 7
Results of the predicted values of velocities for level h = 50 cm were calculated due to the method of “the double logarithm”.

x [cm] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Vy [mm/s]

Vy predicted 5.47 6.76 7.74 8.41 8.80 8.95 8.92 8.74 8.46 8.11 7.72 7.29 6.86 6.42 6.0
Vy exp 6.4 6.6 7.1 7.5 7.5 7.5 7.6 7.6 7.6 6.6 7.4 6.6 6.3 5.8 3.5
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of the analysis, the valuesVy exp which were calculated in Table 6, are
repeated in Table 7.

5.3. Prediction velocities of flowing grains by using interpolation

5.3.1. Prediction velocities due to the nonlinear model of the Gaussian type
Using formula (9) we also calculate the constant values A and B for

level z = 15 cm and their values are following:

A 15cmð Þ ¼ 14:82;B 15cmð Þ ¼ −0:0442: ð17Þ

Substituting the parameters from formula (17) to formula (7a) we
obtain expression for velocity, from which we can calculate velocities
for corresponding values, x1:

Vy ¼ 14:82 e−0:0442x21 : ð18Þ
Table 8
Results for interpolation obtained for level h = 15 cm due to the Gaussian method.

x [cm] 6 7 8 9 10 11 12

Vy [mm/s]

Vy interpol 1.7 3.02 4.91 7.31 9.96 12.42 14.18
Vy exp 0 0.4 5.5 8.6 10.1 10.6 10.5

Table 9
The results of predicted velocities by using interpolation for level h = 15 cm according to the

x [cm] 6 7 8 9 10 11 12

Vy [mm/s]

Vy interpol 0.29 1.17 3.02 5.73 8.69 11.18 12.66
Vy exp 0 0.4 5.5 8.6 10.1 10.6 10.5

Table 10
Values of the flow rate.

h
[cm]

xmin xmax Flow rate Q [cm2/s]

Gaussian method

Nonlinear
regression

Nonlinear regression according to formula (23) and
constants from Table 11

5 8 17 8.15 8.17
10 6 20 10.23 10.08
20 7 21 10.16 10.47
30 4 22 10.52 10.52
40 4 22 10.70 10.53
Detailed calculations of velocities due to formula (18) are given in
Table 8, where we also put the experimental results for more clear
comparison and analysis.

5.3.2. Prediction velocities due to the nonlinear function of “the double
logarithm”

Using formula (12) for level z=15 cmwe obtain values of constant
parameters as follows:

A 15cmð Þ ¼ −40:35;B 15cmð Þ ¼ 33:66;C 15cmð Þ ¼ −6:63: ð19Þ

Substituting values from formula (19) to formula (10a), we obtain
the expression for velocities:

Vy ¼ e−40:35þ33:66 ln x−6:63 ln 2x
: ð20Þ
13 14 15 16 17 18 19 20

14.82 14.18 12.42 9.96 7.31 4.91 3.02 1.7
10.5 10.5 9.4 9.9 8.6 5.5 4 0.25

method of “the double logarithm.”

13 14 15 16 17 18 19 20

13.0 12.36 11.04 9.39 7.67 6.06 4.66 3.51
10.5 10.5 9.4 9.9 8.6 5.5 4.0 0.25

Method of “the double logarithm”

Nonlinear
regression

Nonlinear regression according to formula (23) and
constants from Table 11

7.74 7.75
10.34 10.27
10.48 10.59
10.50 10.56
10.63 10.52



Fig. 16. Values of the flow rate calculated according to formula (23) for empirical
description by applying the function type of “the double logarithm” — nonlinear.

Table 11
The results obtained from formulas (23) to (24).

Method of description a b c R

Gaussian— linearization 10.315 4.581 −69.278 0.9766
Gaussian— nonlinear 10.489 3.320 −74.533 0.9652
“Double logarithm” — linearization 10.069 10.275 −108.019 0.9963
“Double logarithm” — nonlinear 10.283 12.467 −125.66 0.9973
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The calculations according to formula (20) are listed in Table 9,
where we also put the experimental values which were given in
Table 8.

6. Analysis of flow rate in the model

Using the values given in Tables A–E presented in the Appendix, we
determined points where velocity Vy = 0 and the coordinates of these
points (xmin, xmax, respectively) are presented in Table 10. Then we use
formula (7a) to determine flow rate due to description of velocities by
the method of the Gaussian function.

Q ¼
Z13

xmin

AeBx
2

dxþ
Zxmax

13

AeBx
2

dx ð21Þ

where constant values A and B are presented in Table 2 (using the
nonlinear regression).

Calculating the flow rate when describing velocities by the method
of “the double logarithm” we use the following formula:

Q ¼
Zxmax

xmin

eAþB ln xþC ln 2xdx ð22Þ

where the constant values A, B and Cwere taken from Table 4 using the
nonlinear regression. The calculations are listed in Table 10.

The flow rateQ presented in Table 10was described by the following
function:

Q̂ ¼ aþ b
h
þ c
h2

: ð23Þ

The constant values A, B, and C were determined by the method of
the least squares and their values are presented in Table 11, where the
Fig. 15. Values of the flow rate calculated according to formula (23) for empirical descrip-
tion by applying the function of the Gaussian type — nonlinear.
coefficient of correlation R is also given and it was calculated according
to the formula:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

X
Qi−Q ̂

i

� �2

X
Qi−Q

� �2

vuuuut ð24Þ

where Q i denotes the flow rate calculated according to formula (21),Q ̂
i

denotes the flow rate for various heights h calculated according
formula (23), and Q denotes the average values of the flow rate.

The results of the values of flow rate calculated according to formu-
la (23) with the constant values taken from Table 11 are presented in
Table 10.

On the base of data given in Table 10, the values of flow rate calculat-
ed according to formula (23) are presented in Figs. 15–16. In these fig-
ures the points present the flow rate calculated according to formulas
(21–22) and values Q are given in Table 10. The solid lines present the
regression curves according formula (23) and the values Q are given
in Table 10.
Fig. 17. Range of the stagnant boundary at the analyzed instants of the flow.
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7. Empirical description of stagnant zones boundaries

In Table L given in the Appendix a certain set of data is determined.
They are x1 and x2, where x1 is the distance from the left side of the
model where velocity Vy is equal to zero and x2 is the distance from
the right side of the model, where Vy is also equal to zero. These
distances were appointed for time instants t= 1, 25, 50 s and for levels
h = 5, 10, 20, 30, 40 cm.

On the base of values of x1 and x2 the difference x = x2 − x1 was
calculated where Vy ≠ 0. This difference was described by the linear
function:

t ¼ 1 s½ �; x̂ ¼ x2−x1 ¼ 7:45þ 0:3166 h; r ¼ 0:965
t ¼ 25 s½ �; x̂ ¼ x2−x1 ¼ 7:47þ 0:2433 h; r ¼ 0:988
t ¼ 50 s½ �; x̂ ¼ x2−x1 ¼ 8:88þ 0:2485 h; r ¼ 0:964:

ð25Þ

Critical values rk = 0.878 for significance level α= 0.05 and for 5
− 2 = 3 degrees of freedom according to publication [45].

In Fig. 17 the relations (25) are presented in the graphical form.

8. Conclusions

We can draw out a few significant conclusions and discuss them.
They are the following:

1. Rejection “the thick” statistical errors calculated according to
formulas (1) and (2), which are given in Tables A, B, C, D, and E in
the Appendix, and comparing with the critical value Kcrit leads to
the conclusion that it occurs rather seldom for locations of extreme
points where velocities are close to zero.

2. Comparing data given in Tables A–E with data in Tables F–J given in
theAppendix, where the calculations of confidence interval for signif-
icant levels α = 0.05 are presented, we see that time does not have
influence to velocities.

3. Description of velocities of flow by the function of the Gaussian type,
i.e. formula (7a) and the function of “the double logarithm”, i.e.
Table B
Readings at level h = 10 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

7 8 9 10 11 12

Before rejecting After rejecting

1 1 1 1 3 6 10 15
25 0 0 0 0.5 4 13 14.5
50 0 1 1 6 10 11 11.5
75 0.25 2 2 9 11.5 12 12
100 0.5 6 – 10 10 10 10.5
K 0.936 1.907 1.414 1.455 1.524 1.544 1.315

α = 0.05, Kkr = 1.869.

Table A
Readings at level h = 5 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

8 9 10 11 12

1 0.25 0.5 1 6 15
25 0 0 2 10 14
50 0 0.5 6 12 18
75 0.25 3 6 11 19
100 0.5 3 6 10 15
K 1.009 1.213 1.437 1.862 1.44

α = 0.05, Kkr = 1.869.
formula (10a), is presented in this paper. The constant values to
these formulas were calculated by two methods, by the linearization
of these functions or by using the nonlinear regression. Figs. 5–14
confirm that much better description, when calculating the constant
values, was obtained when using nonlinear regression. Also data
given in Table 5awhere the sumof squares of thedifferences of veloc-
ities (using the nonlinear regression), is even a few times lower than
using the linearization. Analyzingdata in Table 5awe see that the bet-
ter description can be obtained by using the function of “the double
logarithm”.

4. The above conclusion is further confirmed by comparison of Table 6
with Table 7 and Table 8 with Table 9, respectively. Analyzing data
in Tables 6 and 7 we see that using extrapolation it makes it possible
to obtain results of velocities much more close to the experimental
values when using the function of “the double logarithm”. The
same conclusion can be drawn when analyzing data obtained by in-
terpolation and presented in Tables 8 and 9. Especially this conclu-
sion is true for the points located further from the symmetry axis of
the silo.

5. Analyzing the curves presented in Figs. 15–16 we can see that the
flow rate has different values in the volume up to h= 10 cm. Higher
than this level the flow rate is stabilized.

6. In Fig. 17 we analyzed the stagnant zone boundaries. They were line-
ar as presented between level h = 5 and up to h = 40 cm. This fact
was also proved by formula (25) where we see the high value of
the Pearson coefficient of correlation and it is higher than the critical
value for the significant level α = 0.05.
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Appendix

Statistical analysis of experimental results.
13 14 15 16 17 18 19

Before rejecting After rejecting

18 17.5 13 8 3.5 – 1 0
15 14.5 11 10 6 6 0.5 0
12 12.5 13 13 9 9 3 0.5
12 12.5 12 12 10.5 10.5 6 1
10.75 9.75 8.75 8.5 7.5 7.5 5 0.5
1.693 1.563 1.768 1.392 2.354 1.341 1.346 1.604

13 14 15 16 17

14.5 26 7 1 0.5
15 16 17 6 0.5
17 13 12.5 11 2.5
20 14 11 8 2
15 9 7 5.5 3.5

4 1.814 1.832 1.628 1.616 1.316



Table C
Readings at level h = 20 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

3 4 5 6 7 8 9 10 11 12 13 14

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

1 0.5 0 1 0 2 0 3 0 4 0 5 5.5 8 9 10 10.25 10
25 0 0 0 0 0 0 0 0 0 0 1 5 8 9.5 9.5 9.75 9.75
50 0 0 0 0 0 0 0 0 0 0 3 8 9.5 9.75 9.75 9.75 9.75
75 0 0 0 0 0 0 0 0 0 0 7 9 10 10.25 10.5 10.5 10.5
K 1.728 0 1.732 0 1.732 0 2.261 0 1.732 0 1.341 1.195 1.254 1.397 1.509 1.354 1.633

Table C (continued)
Readings at level h = 20 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

15 16 17 18 19 20 21 22 23 24 25 26

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

1 9.75 8.5 6.5 4.5 3 1.75 1 0 1 0 0.75 0 0.75 0 0.75 0 0.75 0
25 9.5 .5 9.5 8.25 4 0 0 0 0 0 0 0 0 0 0 0 0 0
50 9.5 9.5 8.75 8.5 6 0.25 0 0 0 0 0 0 0 0 0 0 0 0
75 10.75 10.5 9 6 5 1 0 0 0 0 0 0 0 0 0 0 0 0
K 1.689 1.414 1.651 1.398 1.271 1.460 1.732 0 1.732 0 1.723 0 1.724 0 1.723 0 1.723 0

α = 0.05, Kkr = 1.689.
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Table D
Readings at level h = 30 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

1 1 0 1 0 1 0 2 0 4 0 5 5.75 5.75 6 7 7.75 9 9 9
25 0 0 0 0 0 0 0 0 0 0 0 0 0.5 5.5 7.25 7.5 7.5 8 7.5
50 0 0 0 0 0 0 0 0 0 0 0.5 0.5 1 5 8 8.25 8.25 8.75 8.5
K 1.422 0 1.422 0 1.414 0 1.415 0 1.416 0 1.410 1.412 1.407 1.225 1.365 1.365 1.226 1.365 1.330

Table D (continued)
Readings at level h = 30 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

14 15 16 17 18 19 20 21 22 23 24 25 26

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

1 9 7.75 7 6.5 5.5 4 4 2.5 2 0 2 0 2 0 2 0 2 0
25 7.75 8.25 8 8 7.5 6.5 4 0 0 0 0 0 0 0 0 0 0 0
50 9 8.5 8.5 9 8 8 4.75 0.5 0 0 0 0 0 0 0 0 0 0
K 1.409 1.346 1.283 1.295 0.505 1.315 1.412 1.380 1.414 0 1.414 0 1.414 0 1.414 0 1.414 0

α = 0.05, Kkr = 1.412.
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Table E
Readings at level h = 40 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

1 1 0 2.5 0 3 0 4 0 5 0 5.75 6.5 6.5 7.5 8 8.25 9 8.75 8.5
25 0 0 0 0 0 0 0 0 0 0 0.25 2 6.25 6.25 6.75 6.75 6.75 6.5 7.25
50 0 0 0 0 0 0 0 0 0.25 0 0.25 2.5 3.75 5 7 7.75 8 8.25 9
K 1.422 0 1.416 0 1.415 0 1.416 0 1.526 0 1.412 1.405 1.409 1.224 1.329 1.33 1.272 1.378 1.41

Table E (continued)
Readings at level h = 40 cm.

Time t [s] Vy [mm/s] for the distance from the left wall x [cm]

14 15 16 17 18 19 20 21 22 23 24 25 26

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

Before
rejecting

After
rejecting

1 7.25 7.25 7 6.5 6 5 4 3.25 3.25 0 3.4 0 2.75 0 2.75 0 2.75 0
25 6.5 6.5 6.5 7 7 6 3 0 0 0 0 0 0 0 0 0 0 0
50 8.75 8.75 8.75 8.5 7.75 6.5 5.5 2 0 0 0 0 0 0 0 0 0 0
K 1.359 1.337 1.378 1.376 1.283 1.33 1.293 1.307 2.386 0 2.386 0 1.414 0 1.414 0 1.414 0

α = 0.05, Kkr = 1.412.

407
I.Sielam

ow
icz

etal./Pow
der

Technology
270

(2015)
393

–410



Table F
Statistical values for calculations the confidence interval for level h = 5 cm.

Distance from the left wall x [cm]
Statistical values

8 9 10 11 12 13 14 15 16 17

Vy 0.2 1.4 4.2 9.8 16.2 16.3 15.6 10.9 6.3 1.8
S 0.187 1.319 2.227 2.04 1.939 2.04 5.678 3.747 3.28 1.166
Vy−tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 0 0 1.11 6.97 13.51 13.47 7.72 5.70 1.75 0.18
Vy þ tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 0.46 3.23 7.29 12.63 18.89 19.13 23.48 16.10 10.85 3.42

n = 5, α = 0.05, tn−1;1−α
2
= 2.776.

Table G
Statistical values to calculate the confidence interval for level h = 10 cm.

Distance from the left wall x [cm]
Statistical values

7 8 9 10 11 12 13 14 15 16 17 18 19

Vy 0.35 1.0 5.7 8.3 11.2 12.7 13.55 13.3 11.55 1.03 8.25 3.1 0.4
S 0.374 0.707 3.572 2.821 1.166 1.749 2.629 2.686 1.584 1.939 1.677 2.154 0.374
n 5 5 5 5 5 5 5 5 5 5 4 5 5
Vy−tn−1;1−α

2

Sffiffiffiffiffiffiffi
n−1

p 0.17 0 0.74 4.38 9.58 10.27 9.90 9.57 9.41 7.61 5.17 0.11 0
Vy þ tn−1;1−α

2

Sffiffiffiffiffiffiffi
n−1

p 0.87 2.30 10.66 12.22 12.82 15.13 17.20 17.03 13.69 12.99 11.33 6.09 0.92

n = 5, α = 0.05, t4, 0,975 = 2.776, t3, 0,975 = 3.182.

Table H
Statistical values to calculate the confidence interval for level h = 20 cm.

Distance from the left wall x [cm]
Statistical values

8 9 10 11 12 13 14 15 16 17 18 19 20

Vy 4 6.9 8.9 9.6 9.9 10.1 10.0 9.9 9.5 8.4 6.8 4.5 0.8
S 2.236 1.629 0.893 0.451 0.37 0.325 0.306 0.515 0.707 1151 1.652 1.18 0.685
Vy−tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 0 3.91 7.26 8.8 9.22 9.5 9.44 8.95 8.2 6.33 3.77 2.33 0
Vy þ tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 8.11 9.89 10.54 10.43 10.58 10.7 10.56 10.85 10.8 10.73 9.83 6.67 2.06

n = 4, α = 0.05, tn−1; 1− α
2
= 3.182.

Table I
Statistical values to calculate the confidence interval for level h = 30 cm.

Distance from the left wall x [cm]
Statistical values

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Vy 1.8 2.1 2.4 5.5 7.4 7.8 8.3 8.4 8.3 8.6 8.2 7.9 7.8 7 6.2 6.3 1
S 2.248 2.6 2.336 0.408 0.425 0.312 0.632 0.656 0.624 0589 0.312 0.217 1.027 1.08 1.65 0.354 1.08
Vy−tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 0 0 0 4.26 6.11 6.85 6.38 7.31 6.4 6.99 7.25 5.72 4.68 3.71 1.18 3.22 0
Vy þ tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 8.73 10.01 9.6 6.74 8.69 8.75 10.22 9.89 10.2 10.21 9.15 10.08 10.92 10.29 10.22 5.38 4.29

n = 3, α = 0.05, tn−1; 1− α
2
= 4.303.

Table K
Values of statistics from formulas (5) and (6) with using data from Tables A–E.

ni 13 − ni = xi 13 + ni = xi Time t for levels h [cm]

5 10 20 30 40

1 12 14 0.200 0.374 0.36 0 0.583
2 11 15 0.451 0.356 1.519 0.197 0.431
3 10 16 1.280 1.169 1.825 0.434 0.246
4 9 17 0.454 1.161 1.373 1.222 0
5 8 18 1.651 1.744 1.838 0.68
6 7 19 0.189 3.179 0.305
7 6 20 4.454x 0.313
8 5 21 0.454x 0.296
tcr:0:05:n13−ni

þn13þni
−2 2.306 2.306 2.447 2.447 2.776

Table J
Statistical values to calculate the confidence interval for level h = 40 cm.

Distance from the left wall x [cm]
Statistical values

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Vy 2.2 3.7 5.5 6.3 7.3 7.6 7.9 7.8 8.25 7.5 7.5 7.4 7.3 6.9 5.8 4.2 1.8
S 2.536 2.014 1.242 1.021 0.54 0.624 0.52 0.965 0.736 0935 0.935 0.965 0.85 0.77 0.624 1.024 1.339
Vy−tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 0 0 1.72 3.19 5.66 5.7 6.15 6.7 6.72 7.46 6.43 6.33 6.33 6.08 5.08 3.03 0.27
Vy þ tn−1;1− α

2

Sffiffiffiffiffiffiffi
n−1

p 9.92 9.83 9.28 9.41 8.94 9.5 9.65 8.9 8.88 9.14 8.57 8.47 8.27 7.72 6.52 5.37 3.53

n = 3, α = 0.05, tn−1; 1− α
2
= 4.303.
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Table L
Statistical data for determining the stagnant zone boundaries.

Height h [cm] Parameters of regression values x1 x2 Time t [s]

1 25 50

x Vy x Vy x Vy x Vy x Vy x Vy

1 2 3 4 5 6 7 8 9 10 11 12 13 14
5 8 0.25 14 26 9 0 14 16 9 0.5 14 13

9 0.5 15 7 10 2 15 17 10 6 15 12.5
10 1 16 1 11 10 16 6 11 12 16 11
11 6 17 0.5 12 14 17 0.5 12 18 17 2.5

a −14.93 −46.0 9.9 −52.3 60.9
b 1.775 5.0 −5.75 5.83 −3.30
A −122.11
B 2015.8
r 0.841 0.915 0.977 −0.930 0.998 −0.868
x1 x2 8.41 16.51 9.2 17.22 8.94 18.45

10 8 1 15 13 8 0 16 10 7 0 16 13
9 3 16 8 9 0.5 17 6 8 1 17 9
10 6 18 1 10 4 18 0.5 9 6 18 3
11 10 19 0 11 13 19 0 10 10 19 0.5

a −23.5 −36.0 −25.5
b 3.00 4.25 3.5
A −50.84 −58.35 −69.63
B 949.47 1088.85 1324.68
r 0.989 0.991 0.912 0.971 0.973 0.992
x1 x2 7.83 18.68 8.47 18.66 7.29 19.02

20 7 0 18 4.5 7 0 17 9.5 7 0 18 8.5
8 5 19 3 8 1
9 5.5 20 1.75 9 5 19 4 9 8 20 0.25
10 8 21 0 10 8 20 0 10 9.5 21 0

a 31.075 66.03
b −1.475 −3.28
A 25.53 26.35 33.23 −57.42
B −174.54 −190.83 −234.68 1187.58
r −0.963 −0.998 −0.955 −0.978 −0.986 0.957
x1 x2 6.84 21.07 7.24 20.16 7.06 20.68

30 4 0 19 4 6 0 18 7.5 4 0 19 8
5 5 20 4 7 0.5 19 6.5 5 0.5 20 4.75
6 5.75 21 2.5 8 5.5 20 4 6 0.5 21 0.5
7 5.75 22 0 9 7.25 21 0 7 1 22 0

a 30.30 −16.75 53.25 −1.15
b −1.35 2.675 −2.50 0.30
A 14.50 −54.91
B −54.63 1190.09
r −0.915 −0.923 0.956 −0.966 0.949 0.972
x1 x2 3.77 22.44 6.26 21.3 3.83 21.67

40 4 0 19 5 4 0 18 7 4 0 19 6.5
5 5.75 20 4 5 0.25 19 6 5 0.5 20 5.5
6 6.5 21 3.25 6 2 20 3 6 2.5 21 2
7 6.5 22 0 7 6.25 21 0 7 3.75 22 0

a 35.35 −9.15 50.8 −5.60 50.65
b −1.575 2.05 −2.40 1.325 −2.30
A 16.38
B −61.601
r −0.909 −0.940 0.916 −0.980 0.978 −0.981
x1 x2 3.76 22.44 4.46 21.17 4.23 22.02
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