

INTRODUCTION TO SOLIDIFICATION: PHYSICAL PHENOMENA AND MODELLING PRINCIPLES

Božidar Šarler Laboratory for Multiphase Processes Nova Gorica Polytechnic, Nova Gorica, Slovenia

Institut Podstawowych Problemov Techniki
Polska Akademia Nauk
Centrum Doskonalosci
"Nowoczesne Materialy i Konstrukcje"
Warszawa, Polska, kwiecien 9, 2003

SCOPE

Introduction to Solid-Liquid Phase Change Phenomena

Introduction to Modeling of Solid-Liquid Systems

GOALS

Introduction & Overview

Enthusiasm, Further Study, Identification of Interest

TECHNOLOGIES

Freezing of food
Freeze-drying
Purification of water
Criosurgery, preservation of transplants

Crystal growth
Casting (20% of mass, 40% of money)
Welding
Sintering

Vitrification of radioactive waste

6th Framework: solidification engineering network of excellence

Proposal Submission Forms EUROPEAN COMMISSION 6th Framework Programme for Research, Technological Development and Demonstration Network of Excellence

ORGANISATION SCHEME OF THE **SOLE** NETWORK

COMPLEXITY OF THE SCALES

Nanometer scale: nucleation

Micron scale: microstructure, stresses, strains

Millimeter scale: shape, properties of semi-products and products

COMPLEXITY OF THE COMPOSITIONS

Jmatpro (2003), U.K.

COMPLEXITY OF THE SHAPES 3 intersecting torii

R. Widman, an efficient algorithm for the triangulation of surfaces in 3D. Preprint-Math Dept. Colorado State University, 1991.

PHYSICAL PHENOMENA (1)

two-phase system

PHYSICAL PHENOMENA (2)

Free Boundary

Moving Boundary

solid phase 20 orders of magnitude higher viscosity as liquid phase large jumps of other physical properties (thermal conductivity) latent heat

PHYSICAL PHENOMENA (3)

Melting: solid - liquid (one-component)

Dissolving: solid - liquid (multi-component)

Freezing: liquid-solid (one-component)

Solidification: liquid-solid (multi-component)

PHYSICAL PHENOMENA (4)

NUCLEATION

Homogenous Nucleation

Heterogenous Nucleation

Nuclei 10e-8 m

Fragments 10e-5 m

Orientation of cristallographic axes

PHYSICAL PHENOMENA (5)

INTERPHASE BOUNDARY MORPHOLOGY

EQUIAXED

COLUMNAR

PHYSICAL PHENOMENA (6)

CONVECTION

Forced Internal, External

Interphase Movement Driven: Density Change

Bulk Driven: Thermal Gradients, Concentration Gradients

Interphase Properties Driven: Marangoni Convection

PHYSICAL PHENOMENA (7) INTERPHASE MOVEMENT DRIVEN CONVECTION

pure iodine shrinks 21.6% during solidification!

PHYSICAL PHENOMENA (8) THERMAL CONVECTION

decrease the freezing rate increase the melting rate

THERMAL CONVECTION PHENOMENA Melting of system with high Prandtl number

J.Mencinger's contribution to Gobin-LeQuere benchmark test

THERMAL CONVECTION PHENOMENA Melting of system with low Prandtl number

J.Mencinger's contribution to Gobin-LeQuere benchmark test

PHYSICAL PHENOMENA (9)

SOLID PHASE MOVEMENT

PHYSICAL PHENOMENA (10)

SOLID PHASE MOVEMENT

Settling
Floating
Movement with the melt

Settling when $\rho_S > \rho_1$ in a Gravitational Field

Movement within the Melt, when Viscous & Inertial Forces
Dominate Buoyancy Forces

Floating when $\rho_S < \rho_1$ in a Gravitational Field

PHYSICAL PHENOMENA (11)

SEGREGATION

PHYSICAL PHENOMENA (12) DOUBLE DIFFUSIVE CONVECTION

PHYSICAL PHENOMENA (12/b) DOUBLE DIFFUSIVE CONVECTION

PHYSICAL PHENOMENA (13) MARANGONI CONVECTION

welding crystal growth microgravity

PHYSICAL PHENOMENA (14) REMELTING, MECHANICAL INTERACTION

PHYSICAL PHENOMENA (15)

COARSENING

Packing of Equiaxed Crystals in the Inner Equiaxed Region

> Impingement of Equiaxed Crystals on the Columnar Region (Col-EquiTransition)

Development of Dendritic Crystals in the Columnar Region

Coarsening Phenomena

Final Grain Structure with Grain Sizes for the Inner Equiaxed Region

Final Columnar Structure

PHYSICAL PHENOMENA

Interactions of solid and liquid phase

PHYSICAL PHENOMENA (16) ANISOTROPY

PHYSICAL PHENOMENA (17)

MULTISCALES

1000000.0000000000 m

10.000000000 m

0.00000001 m

MODELLING PROCESS

Physical Concept

Mathematical Concept

Modelling Assumptions/Simplifications

Solution

Verification, Validation

Feedback

Model Refinements

PHYSICAL SYSTEM

General Relativity

Quantum Mechanics

Statistical Mechanics

Continuum Mechanics (Classical Field Theory)

. . .

CONTINUUM MECHANICS

CONTINUUM HYPOTHESIS

Many constitutive parts, average properties, infinitely divisible

NEWTON'S LAWS

First Law - mass, straight line motion

Second Law - momentum, momentum of momentum

Third Law - action-reaction

THERMODYNAMIC LAWS

Zeroth Law - temperature

First Law - conservation of mass, energy

Second Law - entropy

Third Law - lower temperature margin

MATHEMATICAL CONCEPT

GENERAL AXIOMS mathematical description of physical laws

CONSTITUTIVE AXIOMS mathematical description of specific matter behavior

FORMULATION design of equation systems

FORM differential equations integral equations integro-differential equations

MODELLING ASSUMPTIONS

SIMPLIFICATIONS OF GEOMETRY

SIMPLIFICATIONS OF BOUNDARY CONDITIONS

SIMPLIFICATIONS OF GENERAL AND CONSTITUTIVE AXIOMS

EVALUATION

ANALYTICAL SOLUTIONS

CORRELATIONS

DISCRETE APPROXIMATE SOLUTIONS

VALIDATION

Are the equations we are solving correct?

VALIDATION

BASIC LOGIC:

COMPARISON WITH OTHER METHODS

COMPARISON WITH EXPERIMENTS

SENSITIVITY STUDIES

VERIFICATION

Are we solving properly the equations?

VERIFICATION

FINITE DIFFERENCE METHODS

FINITE VOLUME METHODS

FINITE ELEMENT METHODS

SPECTRAL METHODS

BOUNDARY ELEMENT METHODS

MESHLESS METHODS

VERIFICATION

CONSISTENCY

solving the proper equation

STABILITY

small changes in input - small changes in output

CONVERGENCE

mesh refinement - solution accuracy refinement

CONSERVATION

local, global - conservation of physical properties

BOUNDS

local, global - bounds of physical properties

REALIZATION

reasonable computer time, reasonable computer storage

ERROR

discretisation error, round-off error

CONTINUUM MODEL

TRANSPORT EQUATIONS

mass transport
energy transport
momentum transport
moment of momentum transport
entropy transport
species transport

GENERAL TRANSPORT EQUATION

$$\frac{\partial}{\partial t} (\rho \Upsilon(\Phi)) + \nabla \cdot (\rho \vec{v} \Upsilon(\Phi)) = \nabla \cdot (\underline{D}^{\Phi} \nabla \Phi) + S^{\Phi}$$

CONTINUUM MODEL

CONSTITUTIVE EQUATIONS

restrictions on the type of motion: irrotational, isochoric,... specialisations of the transport equations: steady, creeping,...

constitutive relations: incompressible, newtonian,...

mechanical: stress tensor, body force

energetic: Fourier's law, body heating

chemical: Fick's law, body species generation

constitutive equations of state: entropy, internal energy, density

CONTINUUM MODEL

INITIAL + BOUNDARY CONDITIONS

SOLID PHASE transport equations constitutive equations LIQUID PHASE transport equations constitutive equations

SOLID-LIQUID INTERFACE jump conditions interphase conditions

PROBLEM FORMULATIONS MIXTURE THORY FORMULATION

A: solid phase

$$\frac{\partial}{\partial t} \left(\rho_S \Upsilon_S (\Phi_S) \right) + \nabla \cdot \left(\rho_S \vec{v}_S \Upsilon_S (\Phi_S) \right) = \nabla \cdot \left(\underline{D}_S^{\Phi} \nabla \Phi_S \right) + S_S^{\Phi}$$

B: liquid phase

$$\frac{\partial}{\partial t} \left(\rho_L \Upsilon_L(\Phi_L) \right) + \nabla \cdot \left(\rho_L \vec{v}_L \Upsilon_L(\Phi_L) \right) = \nabla \cdot \left(\underline{D}_L^{\Phi} \nabla \Phi_L \right) + S_L^{\Phi}$$

C: ideal mixture theory assumptions in mushy region

three regions, three equations

Flemings et.al., 1967

PROBLEM FORMULATIONS MIXTURE CONTINUUM FORMULATION (1 REGION)

ideal mixture theory assumptions in whole domain

$$\frac{\partial}{\partial t} \left(f_S \rho_S \Upsilon_S (\Phi_S) + f_L \rho_L \Upsilon_L (\Phi_L) \right) + \\
+ \nabla \cdot \left(f_S \rho_S \vec{v}_S \Upsilon_S (\Phi_S) + f_L \rho_L \vec{v}_L \Upsilon_L (\Phi_L) \right) = \\
= \nabla \cdot \left(f_S \underline{D}_S^{\Phi} \nabla \Phi_S + f_L \underline{D}_L^{\Phi} \nabla \Phi_L \right) + f_S S_S^{\Phi} + f_L S_L^{\Phi}$$

one region, one equation

Bennon & Incropera, 1987

PROBLEM FORMULATIONS TWO-PHASE AVERAGED FORMULATION

solid phase

$$\frac{\partial}{\partial t} (f_S \rho_S \Upsilon_S (\Phi_S)) + \nabla \cdot (f_S \rho_S \vec{v}_S \Upsilon_S (\Phi_S)) =
= \nabla \cdot (f_S \underline{D}_S^{\Phi} \nabla \Phi_S) + f_S S_S^{\Phi} + Q_S$$

liquid phase

$$\frac{\partial}{\partial t} (f_L \rho_L \Upsilon_L(\Phi_L)) + \nabla \cdot (f_L \rho_L \vec{v}_L \Upsilon_L(\Phi_L)) =
= \nabla \cdot (f_L \underline{D}_L^{\Phi} \nabla \Phi_L) + f_L S_L^{\Phi} + Q_L$$

one region, two equations

Beckermann & Ni, 1990

PROBLEM FORMULATIONS

ONE-DOMAIN FORMULATION POLYGON METHODS

FEM, FVM, BDIM

Refinement near the interphase!

ONE-DOMAIN FORMULATION SEMI & COMPLETE MESH-FREE METHODS

DRBEM

DRMFS, RBFCM

TWO-DOMAIN FORMULATION SEMI & COMPLETE MESH-FREE METHODS

BEM MFS

